
Package: rdecision (via r-universe)
September 11, 2024

Title Decision Analytic Modelling in Health Economics

Version 1.2.1.9004

Description Classes and functions for modelling health care
interventions using decision trees and semi-Markov models.
Mechanisms are provided for associating an uncertainty
distribution with each source variable and for ensuring
transparency of the mathematical relationships between
variables. The package terminology follows Briggs ``Decision
Modelling for Health Economic Evaluation'' (2006,
ISBN:978-0-19-852662-9).

Depends R (>= 3.1.0)

Imports grid, R6, rlang (>= 0.4.2), stats, withr

Suggests covr, grDevices, igraph, knitr, rmarkdown, testthat (>=
3.0.0), utf8

License GPL-3

Language en-GB

Encoding UTF-8

RoxygenNote 7.3.2

URL https://github.com/ajsims1704/rdecision

BugReports https://github.com/ajsims1704/rdecision/issues

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://ajsims1704.r-universe.dev

RemoteUrl https://github.com/ajsims1704/rdecision

RemoteRef HEAD

RemoteSha f933e1e5dcb1bb6f0a1f3c9134736accb288634f

1

https://github.com/ajsims1704/rdecision
https://github.com/ajsims1704/rdecision/issues

2 Action

Contents
Action . 2
Arborescence . 5
Arrow . 8
BetaDistribution . 9
BetaModVar . 11
BriggsEx47 . 12
ChanceNode . 13
ConstModVar . 14
DecisionNode . 15
DecisionTree . 16
Digraph . 24
DiracDistribution . 29
DirichletDistribution . 31
Distribution . 33
Edge . 35
EmpiricalDistribution . 37
ExprModVar . 39
GammaDistribution . 44
GammaModVar . 46
gbp . 47
Graph . 48
LeafNode . 54
LogNormDistribution . 56
LogNormModVar . 59
MarkovState . 60
ModVar . 62
Node . 66
NormalDistribution . 67
NormModVar . 69
Reaction . 70
SemiMarkovModel . 72
Stack . 79
Transition . 81

Index 83

Action An action in a decision tree

Description

R6 class representing an action (choice) edge.

Details

A specialism of class Arrow which is used in a decision tree to represent an edge whose source node
is a DecisionNode.

Action 3

Super classes

rdecision::Edge -> rdecision::Arrow -> Action

Methods

Public methods:
• Action$new()

• Action$modvars()

• Action$p()

• Action$set_cost()

• Action$cost()

• Action$set_benefit()

• Action$benefit()

• Action$clone()

Method new(): Create an object of type Action. Optionally, a cost and a benefit may be
associated with traversing the edge. A pay-off (benefit minus cost) is sometimes used in edges of
decision trees; the parametrization used here is more general.

Usage:
Action$new(source_node, target_node, label, cost = 0, benefit = 0)

Arguments:

source_node Decision node from which the arrow leaves.
target_node Node to which the arrow points.
label Character string containing the arrow label. This must be defined for an action because

the label is used in tabulation of strategies. It is recommended to choose labels that are brief
and not punctuated with spaces, dots or underscores.

cost Cost associated with traversal of this edge (numeric or ModVar), not NA.
benefit Benefit associated with traversal of the edge, (numeric or ModVar), not NA.

Returns: A new Action object.

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with this Action. Includes operands of these ModVars, if they are expressions.

Usage:
Action$modvars()

Returns: A list of ModVars.

Method p(): Return the current value of the edge probability, i.e., the conditional probability of
traversing the edge.

Usage:
Action$p()

Returns: Numeric value equal to 1.

Method set_cost(): Set the cost associated with the action edge.

4 Action

Usage:

Action$set_cost(c = 0)

Arguments:

c Cost associated with traversing the action edge. Of type numeric or ModVar, not NA.

Returns: Updated Action object.

Method cost(): Return the cost associated with traversing the edge.

Usage:

Action$cost()

Returns: Cost.

Method set_benefit(): Set the benefit associated with the action edge.

Usage:

Action$set_benefit(b = 0)

Arguments:

b Benefit associated with traversing the action edge. Of type numeric or ModVar.

Returns: Updated Action object.

Method benefit(): Return the benefit associated with traversing the edge.

Usage:

Action$benefit()

Returns: Benefit.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Action$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

Arborescence 5

Arborescence A rooted directed tree

Description

An R6 class representing an arborescence (a rooted directed tree).

Details

Class to encapsulate a directed rooted tree specialization of a digraph. An arborescence is a directed
tree with exactly one root and unique directed paths from the root. Inherits from class Digraph.

Super classes

rdecision::Graph -> rdecision::Digraph -> Arborescence

Methods

Public methods:
• Arborescence$new()

• Arborescence$parent()

• Arborescence$is_parent()

• Arborescence$is_leaf()

• Arborescence$root()

• Arborescence$is_root()

• Arborescence$siblings()

• Arborescence$root_to_leaf_paths()

• Arborescence$postree()

• Arborescence$clone()

Method new(): Create a new Arborescence object from sets of nodes and edges.

Usage:
Arborescence$new(V, A)

Arguments:

V A list of Nodes.
A A list of Arrows.

Returns: An Arborescence object.

Method parent(): Find the parent of a Node.

Usage:
Arborescence$parent(v)

Arguments:

v Index node, or a list of index Nodes.

6 Arborescence

Returns: A list of Nodes of the same length as v, if v is a list, or a scalar Node if v is a single
node. NA if v (or an element of v) is the root node.

Method is_parent(): Test whether the given node(s) is (are) parent(s).

Usage:
Arborescence$is_parent(v)

Arguments:
v Node to test, or a list of Nodes.

Details: In an arborescence, is_parent() and is_leaf() are mutually exclusive.

Returns: A logical vector of the same length as v, if v is a list, or a logical scalar if v is a single
node.

Method is_leaf(): Test whether the given node is a leaf.

Usage:
Arborescence$is_leaf(v)

Arguments:
v Node to test, or a list of Nodes.

Details: In an arborescence, is_parent() and is_leaf() are mutually exclusive.

Returns: A logical vector of the same length as v, if v is a list, or a logical scalar is v is a single
node.

Method root(): Find the root vertex of the arborescence.

Usage:
Arborescence$root()

Returns: The root vertex.

Method is_root(): Is the specified node the root?

Usage:
Arborescence$is_root(v)

Arguments:
v Vertex to test, or list of vertexes

Returns: A logical vector if v is a list, or a logical scalar if v is a single node.

Method siblings(): Find the siblings of a vertex in the arborescence.

Usage:
Arborescence$siblings(v)

Arguments:
v Vertex to test (only accepts a scalar Node).

Returns: A (possibly empty) list of siblings.

Method root_to_leaf_paths(): Find all directed paths from the root of the tree to the leaves.

Usage:

Arborescence 7

Arborescence$root_to_leaf_paths()

Returns: A list of ordered node lists.

Method postree(): Implements function POSITIONTREE (Walker, 1989) to determine the coor-
dinates for each node in an arborescence.

Usage:
Arborescence$postree(
SiblingSeparation = 4,
SubtreeSeparation = 4,
LevelSeparation = 1,
RootOrientation = "SOUTH",
MaxDepth = Inf

)

Arguments:

SiblingSeparation Distance in arbitrary units for the distance between siblings.
SubtreeSeparation Distance in arbitrary units for the distance between neighbouring sub-

trees.
LevelSeparation Distance in arbitrary units for the separation between adjacent levels.
RootOrientation Must be one of "NORTH", "SOUTH", "EAST", "WEST". Defined as per

Walker (1989), but noting that Walker assumed that y increased down the page. Thus the
meaning of NORTH and SOUTH are opposite to his, with the default (SOUTH) having the
child nodes at positive y value and root at zero, as per his example (figure 12).

MaxDepth The maximum depth (number of levels) to be drawn; if the tree exceeds this, an error
will be raised.

Details: In the rdecision implementation, the sibling order is taken to be the lexicographic
order of the node labels, if they are unique among siblings, or the node indexes otherwise.

Returns: A data frame with one row per node and three columns (n, x and y) where n gives the
node index given by the Graph::vertex_index() function.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Arborescence$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

References

Walker, John Q II. A A node-positioning algorithm for general trees. University of North Carolina
Technical Report TR 89-034, 1989.

8 Arrow

Arrow A directed edge in a digraph

Description

An R6 class representing an directed edge in a digraph.

Details

An arrow is the formal term for an edge between pairs of nodes in a directed graph. Inherits from
class Edge.

Super class

rdecision::Edge -> Arrow

Methods

Public methods:
• Arrow$new()

• Arrow$source()

• Arrow$target()

• Arrow$clone()

Method new(): Create an object of type Arrow.

Usage:
Arrow$new(source_node, target_node, label = "")

Arguments:
source_node Node from which the arrow leaves.
target_node Node to which the arrow points.
label Character string containing the arrow label.

Returns: A new Arrow object.

Method source(): Access source node.

Usage:
Arrow$source()

Returns: Node from which the arrow leads.

Method target(): Access target node.

Usage:
Arrow$target()

Returns: Node to which the arrow points.

Method clone(): The objects of this class are cloneable with this method.

BetaDistribution 9

Usage:
Arrow$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

BetaDistribution A parametrized Beta Distribution

Description

An R6 class representing a Beta distribution with parameters.

Details

A Beta distribution with hyperparameters for shape (alpha and beta). Inherits from class Distribution.

Super class

rdecision::Distribution -> BetaDistribution

Methods

Public methods:
• BetaDistribution$new()

• BetaDistribution$distribution()

• BetaDistribution$mean()

• BetaDistribution$mode()

• BetaDistribution$SD()

• BetaDistribution$sample()

• BetaDistribution$quantile()

• BetaDistribution$clone()

Method new(): Create an object of class BetaDistribution.

Usage:
BetaDistribution$new(alpha, beta)

Arguments:

alpha parameter of the Beta distribution.
beta parameter of the Beta distribution.

Returns: An object of class BetaDistribution.

10 BetaDistribution

Method distribution(): Accessor function for the name of the uncertainty distribution.

Usage:
BetaDistribution$distribution()

Returns: Distribution name as character string.

Method mean(): The expected value of the distribution.

Usage:
BetaDistribution$mean()

Returns: Expected value as a numeric value.

Method mode(): The mode of the distribution (if alpha, beta > 1)

Usage:
BetaDistribution$mode()

Returns: mode as a numeric value.

Method SD(): The standard deviation of the distribution.

Usage:
BetaDistribution$SD()

Returns: Standard deviation as a numeric value

Method sample(): Draw and hold a random sample from the model variable.

Usage:
BetaDistribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Returns: Updated distribution.

Method quantile(): The quantiles of the Beta distribution.

Usage:
BetaDistribution$quantile(probs)

Arguments:
probs Vector of probabilities, in range [0,1].

Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BetaDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

BetaModVar 11

BetaModVar A model variable whose uncertainty follows a Beta distribution

Description

An R6 class representing a model variable whose uncertainty is described by a Beta distribution.

Details

A model variable for which the uncertainty in the point estimate can be modelled with a Beta
distribution. The hyperparameters of the distribution are the shape parameters (alpha and beta) of
the uncertainty distribution. Inherits from class ModVar.

Super class

rdecision::ModVar -> BetaModVar

Methods

Public methods:
• BetaModVar$new()

• BetaModVar$is_probabilistic()

• BetaModVar$clone()

Method new(): Create an object of class BetaModVar.
Usage:
BetaModVar$new(description, units, alpha, beta)

Arguments:
description A character string describing the variable.
units Units of the variable, as character string.
alpha parameter of the Beta distribution.
beta parameter of the Beta distribution.
Returns: An object of class BetaModVar.

Method is_probabilistic(): Tests whether the model variable is probabilistic, i.e. a random
variable that follows a distribution, or an expression involving random variables, some of which
follow distributions.

Usage:
BetaModVar$is_probabilistic()

Returns: TRUE if probabilistic

Method clone(): The objects of this class are cloneable with this method.
Usage:
BetaModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

12 BriggsEx47

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

BriggsEx47 Probabilistic results of HIV model

Description

A dataset containing PSA results of Briggs example 2.5.

Usage

data(BriggsEx47)

Format

A data frame with 1000 rows and 7 columns:

Mono.LYs Life years gained with monotherapy

Mono.Cost Incremental cost with monotherapy, in GBP

Comb.LYs Life years gained with combination therapy

Comb.Cost Incremental cost with combination therapy, in GBP

Diff.LYG Difference in life years gained

Diff.incCost Difference in incremental cost, GBP

ICER Incremental cost effectiveness ratio, GBP/QALY

Details

A dataset containing the results of probabilistic sensitivity analysis of Briggs (2006) example 2.5
(HIV model), provided as Example 4.7 in the book. These data were generated from the solution
spreadsheet provided as a companion to the book (Exercise 4.7 solution) via an Excel macro written
to record 1000 runs of the model.

Source

https://www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation/

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

https://www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation/

ChanceNode 13

ChanceNode A chance node in a decision tree

Description

An R6 class representing a chance node in a decision tree.

Details

A chance node is associated with at least two branches to other nodes, each of which has a condi-
tional probability (the probability of following that branch given that the node has been reached).
Inherits from class Node.

Super class

rdecision::Node -> ChanceNode

Methods

Public methods:

• ChanceNode$new()

• ChanceNode$clone()

Method new(): Create a new ChanceNode object

Usage:
ChanceNode$new(label = "")

Arguments:

label An optional label for the chance node.

Returns: A new ChanceNode object

Method clone(): The objects of this class are cloneable with this method.

Usage:
ChanceNode$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

14 ConstModVar

ConstModVar A constant model variable

Description

An R6 class representing a constant in a model.

Details

A ModVar with no uncertainty in its value. Its distribution is treated as a Dirac delta function
δ(x − c) where c is the hyperparameter (value of the constant). The benefit over using a regular
numeric variable in a model is that it will appear in tabulations of the model variables associated
with a model and therefore be explicitly documented as a model input. Inherits from class ModVar.

Super class

rdecision::ModVar -> ConstModVar

Methods

Public methods:
• ConstModVar$new()

• ConstModVar$is_probabilistic()

• ConstModVar$clone()

Method new(): Create a new constant model variable.
Usage:
ConstModVar$new(description, units, const)

Arguments:
description A character string description of the variable and its role in the model. This

description will be used in a tabulation of the variables linked to a model.
units A character string description of the units, e.g. "GBP", "per year".
const The constant numerical value of the object.
Returns: A new ConstModVar object.

Method is_probabilistic(): Tests whether the model variable is probabilistic.
Usage:
ConstModVar$is_probabilistic()

Details: Does the random variable follow a distribution, or is it an expression involving’ ran-
dom variables, some of which follow distributions?
Returns: TRUE if probabilistic

Method clone(): The objects of this class are cloneable with this method.
Usage:
ConstModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

DecisionNode 15

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

DecisionNode A decision node in a decision tree

Description

An R6 class representing a decision node in a decision tree.

Details

A class to represent a decision node in a decision tree. The node is associated with one or more
branches to child nodes. Inherits from class Node.

Super class

rdecision::Node -> DecisionNode

Methods

Public methods:
• DecisionNode$new()

• DecisionNode$clone()

Method new(): Create a new decision node.

Usage:
DecisionNode$new(label)

Arguments:

label A label for the node. Must be defined because the label is used in tabulation of strategies.
The label is automatically converted to a syntactically valid (in R) name to ensure it can be
used as a column name in a data frame.

Returns: A new DecisionNode object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DecisionNode$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

16 DecisionTree

DecisionTree A decision tree

Description

An R6 class to represent a decision tree model.

Details

A class to represent a decision tree. An object contains a tree of decision nodes, chance nodes and
leaf nodes, connected by edges (either actions or reactions). It inherits from class Arborescence
and satisfies the following conditions:

1. Nodes and edges must form a tree with a single root and there must be a unique path from the
root to each node. In graph theory terminology, the directed graph formed by the nodes and
edges must be an arborescence.

2. Each node must inherit from one of DecisionNode, ChanceNode or LeafNode. Formally the
set of vertices must be a disjoint union of sets of decision nodes, chance nodes and leaf nodes.

3. All and only leaf nodes must have no children.

4. Each edge must inherit from either Action or Reaction.

5. All and only edges that have source endpoints joined to decision nodes must inherit from
Action.

6. All and only edges that have source endpoints joined to chance nodes must inherit from
Reaction.

7. The sum of probabilities of each set of reaction edges with a common source endpoint must
be 1.

8. Each DecisionNode must have a label, and the labels of all DecisionNodes must be unique
within the model.

9. Each Action must have a label, and the labels of Actions that share a common source end-
point must be unique.

Super classes

rdecision::Graph -> rdecision::Digraph -> rdecision::Arborescence -> DecisionTree

Methods

Public methods:
• DecisionTree$new()

• DecisionTree$decision_nodes()

• DecisionTree$chance_nodes()

• DecisionTree$leaf_nodes()

• DecisionTree$actions()

• DecisionTree$modvars()

DecisionTree 17

• DecisionTree$modvar_table()

• DecisionTree$draw()

• DecisionTree$is_strategy()

• DecisionTree$strategy_table()

• DecisionTree$strategy_paths()

• DecisionTree$edge_properties()

• DecisionTree$evaluate_walks()

• DecisionTree$evaluate()

• DecisionTree$tornado()

• DecisionTree$threshold()

• DecisionTree$clone()

Method new(): Create a new decision tree.

Usage:
DecisionTree$new(V, E)

Arguments:

V A list of nodes.
E A list of edges.

Details: The tree must consist of a set of nodes and a set of edges which satisfy the conditions
given in the details section of this class. In addition, the decision nodes must not be labelled
with any of the words used as the column headings listed in evaluate.

Returns: A DecisionTree object

Method decision_nodes(): Find the decision nodes in the tree.

Usage:
DecisionTree$decision_nodes(what = "node")

Arguments:

what A character string defining what to return. Must be one of "node", "label" or "index".

Returns: A list of DecisionNode objects (for what = "node"); a list of character strings (for
what = "label"), or an integer vector with indexes of the decision nodes (for what = "index").

Method chance_nodes(): Find the chance nodes in the tree.

Usage:
DecisionTree$chance_nodes(what = "node")

Arguments:

what A character string defining what to return. Must be one of "node", "label" or "index".

Returns: A list of ChanceNode objects (for what = "node"); a list of character strings (for what
= "label"), or an integer vector with indexes of the decision nodes (for what = "index").

Method leaf_nodes(): Find the leaf nodes in the tree.

Usage:
DecisionTree$leaf_nodes(what = "node")

18 DecisionTree

Arguments:
what One of "node" (returns Node objects), "label" (returns the leaf node labels) or "index"

(returns the vertex indexes of the leaf nodes).

Returns: A list of LeafNode objects (for what = "node"); a list of character strings (for what =
"label"); or an integer vector of leaf node indexes (for what = "index").

Method actions(): Find the edges that have the specified decision node as their source.

Usage:
DecisionTree$actions(d)

Arguments:
d A decision node.

Returns: A list of Action edges.

Method modvars(): Find all the model variables of type ModVar.

Usage:
DecisionTree$modvars()

Details: Find ModVars that have been specified as values associated with the nodes and edges
of the tree.

Returns: A list of ModVars.

Method modvar_table(): Tabulate the model variables.

Usage:
DecisionTree$modvar_table()

Returns: Data frame with one row per model variable, as follows:
Description As given at initialization.
Units Units of the variable.
Distribution Either the uncertainty distribution, if it is a regular model variable, or the ex-

pression used to create it, if it is an ExprModVar.
Mean Mean; calculated from means of operands if an expression.
E Expectation; estimated from random sample if expression, mean otherwise.
SD Standard deviation; estimated from random sample if expression, exact value otherwise.
Q2.5 p=0.025 quantile; estimated from random sample if expression, exact value otherwise.
Q97.5 p=0.975 quantile; estimated from random sample if expression, exact value otherwise.
Est TRUE if the quantiles and SD have been estimated by random sampling.

Method draw(): Draw the decision tree to the current graphics output.

Usage:
DecisionTree$draw(border = FALSE, fontsize = 8)

Arguments:
border If TRUE draw a light grey border around the plot area.
fontsize Font size for labels in point. Symbols for nodes scale with font size.

Details: Uses the algorithm of Walker (1989) to distribute the nodes compactly (see the Ar-
borescence class help for details).

DecisionTree 19

Returns: No return value.

Method is_strategy(): Tests whether an object is a valid strategy.

Usage:
DecisionTree$is_strategy(strategy)

Arguments:
strategy A list of Action edges.

Details: A strategy is a unanimous prescription of an action taken at each decision node, coded
as a list of action edges. This checks whether the strategy is valid for this decision tree.

Returns: TRUE if the strategy is valid for this tree. Returns FALSE if the list of Action edges
are not a valid strategy.

Method strategy_table(): Find all potential strategies for the decision tree.

Usage:
DecisionTree$strategy_table(what = "index", select = NULL)

Arguments:
what A character string defining what to return. Must be one of "label" or "index".
select A single strategy (given as a list of action edges, with one action edge per decision

node). If provided, only that strategy is selected from the returned table. Intended for
tabulating a single strategy into a readable form.

Details: A strategy is a unanimous prescription of the actions at each decision node. If there
are decision nodes that are descendants of other nodes in the tree, the strategies returned will
not necessarily be unique.

Returns: A data frame where each row is a potential strategy and each column is a decision
node, ordered lexicographically. Values are either the index of each action edge, or their label.
The row names are the edge labels of each strategy, concatenated with underscores.

Method strategy_paths(): Find all paths walked in each possible strategy.

Usage:
DecisionTree$strategy_paths()

Details: A strategy is a unanimous prescription of an action in each decision node. Some paths
can be walked in more than one strategy, if there exist paths that do not pass a decision node.

Returns: A data frame, where each row is a path walked in a strategy. The structure is similar
to that returned by strategy_table but includes an extra column, Leaf which gives the leaf
node index of each path, and there is one row for each path in each strategy.

Method edge_properties(): Properties of all actions and reactions as a matrix.

Usage:
DecisionTree$edge_properties()

Details: Gets the properties (probability, cost, benefit) of each action and reaction in the deci-
sion tree in matrix form. If there are reactions from chance nodes whose conditional probability
of traversal set to NA, the missing values are replaced by one minus the sum of the conditional
probabilities of the other reaction edges from that node (provided there is no more than one with
NA). If the method is called at evaluation, the replacement of NAs happens after sampling from
model variables.

20 DecisionTree

Returns: A numeric matrix with one row per edge, and with four columns: the index of the
edge, the conditional probability of traversing the edge, the cost of traversing the edge and the
benefit associated with traversing the edge. The column names are index, probability, cost,
benefit and the row names are the labels of the edges.

Method evaluate_walks(): Evaluate the components of pay-off associated with a set of walks
in the decision tree.

Usage:
DecisionTree$evaluate_walks(W = NULL, Wi = NULL)

Arguments:
W A list of root-to-leaf walks. A walk is a sequence of edges (actions and reactions), stored as a

list. Each walk must start with an edge whose source is the root node and end with an edge
whose target is a leaf node. The list of walks is normally the walks associated with all the
root to leaf paths in a tree.

Wi As W but with edge indices instead of Edge objects. One of W and Wi must be NULL. It
is more efficient to provide Wi during PSA, where the paths do not change between cycles,
to avoid repeated conversion of edges to indices.

Details: For each walk, probability, cost, benefit and utility are calculated. There is minimal
checking of the argument because this function is intended to be called repeatedly during tree
evaluation, including PSA.

Returns: A pay-off table, represented as a matrix of numeric values with response columns as
follows:
Probability The probability of traversing the pathway.
Path.Cost The cost of traversing the pathway.
Path.Benefit The benefit derived from traversing the pathway.
Path.Utility The utility associated with the outcome (leaf node).
Path.QALY The QALYs associated with the outcome (leaf node).
Cost Path.Cost ∗ probability of traversing the pathway.
Benefit Path.Benefit ∗ probability of traversing the pathway.
Utility Path.Utility ∗ probability of traversing the pathway.
QALY Path.QALY ∗ probability of traversing the pathway.
The matrix has one row per path, with the row label equal to the character representation of the
index of the leaf node at the end of the path.

Method evaluate(): Evaluate each strategy.

Usage:
DecisionTree$evaluate(setvars = "expected", N = 1L, by = "strategy")

Arguments:
setvars One of "expected" (evaluate with each model variable at its mean value), "random"

(sample each variable from its uncertainty distribution and evaluate the model), "q2.5",
"q50", "q97.5" (set each model variable to its 2.5%, 50% or 97.5% quantile, respectively,
and evaluate the model) or "current" (leave each model variable at its current value prior to
calling the function and evaluate the model).

N Number of replicates. Intended for use with PSA (modvars = "random"); use with modvars
= "expected" will be repetitive and uninformative.

DecisionTree 21

by One of {"path", "strategy", "run"}. If "path", the table has one row per path walked per
strategy, per run, and includes the label of the terminating leaf node to identify each path. If
"strategy" (the default), the table is aggregated by strategy, i.e., there is one row per strategy
per run. If "run", the table has one row per run and uses concatenated strategy names (as
above) and one (cost, benefit, utility, QALY) as row names.

Details: Starting with the root, the function works though all possible paths to leaf nodes and
computes the probability, cost, benefit and utility of each, optionally aggregated by strategy or
run. The columns of the returned data frame are:
by = "path" Run Run number

<label of first decision node> label of action leaving the node
<label of second decision node (etc.)> label of action leaving the node
Leaf The label of terminating leaf node
Probability Probability of traversing the path
Cost Cost of traversing the path
Benefit Benefit of traversing the path
Utility Utility of traversing the path
QALY QALY of traversing the path

by = "strategy" Run Run number
<label of first decision node> label of action leaving the node
<label of second decision node (etc) label of action
Probability Σpi for the run (1)
Cost Aggregate cost of the strategy
Benefit Aggregate benefit of the strategy
Utility Aggregate utility of the strategy
QALY Aggregate QALY of the strategy

by = "run" Run Run number
Probability.<S> Probability for strategy S
Cost.<S> Cost for strategy S
Benefit.<S> Benefit for strategy S
Utility.<S> Benefit for strategy S
QALY.<S> QALY for strategy S
where <S> is a label associated with strategy S. Each strategy label is a list of the labels
of the action edges that are traversed in the strategy, concatenated with underscores. The
ordering of each label part follows the lexicographical order of the decision node labels
concatenated with underscores. For example, if there are three decision nodes labelled d1,
d2 and d3, each strategy label will be of the form a1i_a2i_a3i where a1i is the label of
one action edge emanating from decision node d1, etc. There will be one probability, cost,
benefit, utility and QALY column for each strategy.

Returns: A data frame whose columns depend on by; see "Details".

Method tornado(): Create a "tornado" diagram.

Usage:

22 DecisionTree

DecisionTree$tornado(
index,
ref,
outcome = "saving",
exclude = NULL,
draw = TRUE

)

Arguments:

index The index strategy (option) to be evaluated.
ref The reference strategy (option) with which the index strategy will be compared.
outcome One of "saving" or "ICER". For "saving" (e.g. in cost consequence analysis), the

x axis is cost saved (cost of reference minus cost of index), on the presumption that the
new technology will be cost saving at the point estimate. For "ICER" the x axis is ∆C/∆E
and is expected to be positive at the point estimate (i.e. in the NE or SW quadrants of the
cost-effectiveness plane), where ∆C is cost of index minus cost of reference, and ∆E is
utility of index minus utility of reference.

exclude A list of descriptions of model variables to be excluded from the tornado.
draw TRUE if the graph is to be drawn; otherwise return the data frame silently.

Details: Used to compare two strategies for traversing the decision tree. A strategy is a unan-
imous prescription of the actions at each decision node. The extreme values of each input
variable are the upper and lower 95% confidence limits of the uncertainty distributions of each
variable. This ensures that the range of each input is defensible (Briggs 2012).

Returns: A data frame with one row per input model variable and columns for: minimum value
of the variable, maximum value of the variable, minimum value of the outcome and maximum
value of the outcome. NULL if there are no ModVars.

Method threshold(): Find the threshold value of a model variable at which the cost difference
is zero or the ICER is equal to a threshold, for an index strategy compared with a reference
strategy.

Usage:
DecisionTree$threshold(
index,
ref,
outcome,
mvd,
a,
b,
tol,
lambda = NULL,
nmax = 1000L

)

Arguments:

index The index strategy (option) to be evaluated.
ref The reference strategy (option) with which the index strategy will be compared.

DecisionTree 23

outcome One of "saving" or "ICER". For "saving" (e.g., in cost consequence analysis), the
value of mvd is found at which cost saved is zero (cost saved is cost of reference minus
cost of index, on the presumption that the new technology will be cost saving at the point
estimate). For "ICER" the value of mvd is found for which the incremental cost effectiveness
ratio (ICER) is equal to the threshold lambda. ICER is calculated as ∆C/∆E, which will
normally be positive at the point estimate (i.e. in the NE or SW quadrants of the cost-
effectiveness plane), where ∆C is cost of index minus cost of reference and ∆E is utility
of index minus utility of reference.

mvd The description of the model variable for which the threshold is to be found.

a The lower bound of the range of values of mvd to search for the root (numeric).

b The upper bound of the range of values of mvd to search for the root (numeric).

tol The tolerance to which the threshold should be calculated (numeric).

lambda The ICER threshold (threshold ratio) for outcome="ICER".

nmax Maximum number if iterations allowed to reach convergence.

Details: Uses a rudimentary bisection method method to find the root. In PSA terms, the
algorithm finds the value of the specified model variable for which 50% of runs are cost saving
(or above the ICER threshold) and 50% are cost incurring (below the ICER threshold).

Returns: Value of the model variable of interest at the threshold.

Method clone(): The objects of this class are cloneable with this method.

Usage:

DecisionTree$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model Parameter
Estimation and Uncertainty: A Report of the ISPOR-SMDM Modeling Good Research Practices
Task Force-6. Value in Health 2012;15:835–42, doi:10.1016/j.jval.2012.04.014.

Kaminski B, Jakubczyk M, Szufel P. A framework for sensitivity analysis of decision trees. Central
European Journal of Operational Research 2018;26:135–59, doi:10.1007/s1010001704796.

https://doi.org/10.1016/j.jval.2012.04.014
https://doi.org/10.1007/s10100-017-0479-6

24 Digraph

Digraph A directed graph

Description

An R6 class representing a digraph (a directed graph).

Details

Encapsulates and provides methods for computation and checking of directed graphs (digraphs).
Inherits from class Graph.

Value

A GML stream as a character vector.

Super class

rdecision::Graph -> Digraph

Methods

Public methods:
• Digraph$new()

• Digraph$digraph_adjacency_matrix()

• Digraph$digraph_incidence_matrix()

• Digraph$topological_sort()

• Digraph$is_connected()

• Digraph$is_weakly_connected()

• Digraph$is_acyclic()

• Digraph$is_tree()

• Digraph$is_polytree()

• Digraph$is_arborescence()

• Digraph$direct_successors()

• Digraph$direct_predecessors()

• Digraph$arrow_source()

• Digraph$arrow_target()

• Digraph$paths()

• Digraph$walk()

• Digraph$as_DOT()

• Digraph$as_gml()

• Digraph$clone()

Method new(): Create a new Digraph object from sets of nodes and edges.

Digraph 25

Usage:
Digraph$new(V, A)

Arguments:

V A list of Nodes.
A A list of Arrows.

Returns: A Digraph object.

Method digraph_adjacency_matrix(): Compute the adjacency matrix for the digraph.

Usage:
Digraph$digraph_adjacency_matrix(boolean = FALSE)

Arguments:

boolean If TRUE, the adjacency matrix is logical, each cell is {FALSE,TRUE}.

Details: Each cell contains the number of edges from the row vertex to the column vertex, with
the convention of self loops being counted once, unless boolean is TRUE when cells are either
FALSE (not adjacent) or TRUE (adjacent).

Returns: A square integer matrix with the number of rows and columns equal to the order of the
graph. The rows and columns are in the same order as V. If the nodes have defined and unique
labels the dimnames of the matrix are the labels of the nodes.

Method digraph_incidence_matrix(): Compute the incidence matrix for the digraph.

Usage:
Digraph$digraph_incidence_matrix()

Details: Each row is a vertex and each column is an edge. Edges leaving a vertex have value
-1 and edges entering have value +1. By convention self loops have value 0 (1-1). If all vertexes
have defined and unique labels and all edges have defined and unique labels, the dimnames of
the matrix are the labels of the vertexes and edges.

Returns: The incidence matrix of integers.

Method topological_sort(): Topologically sort the vertexes in the digraph.

Usage:
Digraph$topological_sort()

Details: Uses Kahn’s algorithm (Kahn, 1962).

Returns: A list of vertexes, topologically sorted. If the digraph has cycles, the returned ordered
list will not contain all the vertexes in the graph, but no error will be raised.

Method is_connected(): Test whether the graph is connected.

Usage:
Digraph$is_connected()

Details: For digraphs this will always return FALSE because connected is not defined. Function
weakly_connected calculates whether the underlying graph is connected.

Returns: TRUE if connected, FALSE if not.

26 Digraph

Method is_weakly_connected(): Test whether the digraph is weakly connected, i.e. if the
underlying graph is connected.

Usage:
Digraph$is_weakly_connected()

Returns: TRUE if connected, FALSE if not.

Method is_acyclic(): Checks for the presence of a cycle in the graph.

Usage:
Digraph$is_acyclic()

Details: Attempts to do a topological sort. If the sort does not contain all vertexes, the digraph
contains at least one cycle. This method overrides is_acyclic in Graph.

Returns: TRUE if no cycles detected.

Method is_tree(): Is the digraph’s underlying graph a tree?

Usage:
Digraph$is_tree()

Details: It is a tree if it is connected and acyclic.

Returns: TRUE if the underlying graph is a tree; FALSE if not.

Method is_polytree(): Is the digraph’s underlying graph a polytree?

Usage:
Digraph$is_polytree()

Details: It is a polytree if it is directed, connected and acyclic. Because the object is a digraph
(directed), this is synonymous with tree.

Returns: TRUE if the underlying graph is a tree; FALSE if not.

Method is_arborescence(): Is the digraph an arborescence?

Usage:
Digraph$is_arborescence()

Details: An arborescence is a tree with a single root and unique paths from the root.

Returns: TRUE if the digraph is an arborescence; FALSE if not.

Method direct_successors(): Find the direct successors of a node.

Usage:
Digraph$direct_successors(v)

Arguments:
v The index vertex (a scalar; does not accept a vector of nodes).

Returns: A list of Nodes or an empty list if the specified node has no successors.

Method direct_predecessors(): Find the direct predecessors of a node.

Usage:
Digraph$direct_predecessors(v)

Digraph 27

Arguments:

v The index vertex (a scalar; does not accept an index of nodes).

Returns: A list of Nodes or an empty list if the specified node has no predecessors.

Method arrow_source(): Find the node that is the source of the given arrow.

Usage:
Digraph$arrow_source(a)

Arguments:

a An arrow (directed edge), which must be in the digraph.

Details: The source node is a property of the arrow, not the digraph of which it is part, hence
the canonical method for establishing the source node of an arrow is via method $source of an
Arrow object. This function is provided for convenience when iterating the arrows of a digraph.
It raises an error if the arrow is not in the graph. It returns the index of the source node, which
is a property of the graph; the node object itself may be retrieved using the $vertex_at method
of the graph.

Returns: Index of the source node of the specified edge.

Method arrow_target(): Find the node that is the target of the given arrow.

Usage:
Digraph$arrow_target(a)

Arguments:

a An arrow (directed edge), which must be in the digraph.

Details: The target node is a property of the arrow, not the digraph of which it is part, hence
the canonical method for establishing the target node of an arrow is via method $target of an
$Arrow object. This function is provided for convenience when iterating the arrows of a digraph.
It raises an error if the arrow is not in the graph. It returns the index of the target node, which
is a property of the graph; the node itself may be retrieved using the $vertex_at method of the
graph.

Returns: Index of the target node of the specified edge.

Method paths(): Find all directed simple paths from source to target.

Usage:
Digraph$paths(s, t)

Arguments:

s Source node.
t Target node.

Details: In simple paths all vertexes are unique. Uses a recursive depth-first search algorithm.

Returns: A list of ordered node lists.

Method walk(): Sequence of edges which join the specified path.

Usage:
Digraph$walk(P, what = "edge")

28 Digraph

Arguments:

P A list of Nodes
what One of "edge" or "index".

Returns: A list of Edges for what = "edge" or a list of Edge indices for what = "index".

Method as_DOT(): Exports the digraph in DOT notation.

Usage:
Digraph$as_DOT(rankdir = "LR", width = 7, height = 7)

Arguments:

rankdir One of "LR" (default), "TB", "RL" or "BT".
width of the drawing, in inches
height of the drawing, in inches

Details: Writes a representation of the digraph in the graphviz DOT language (https://
graphviz.org/doc/info/lang.html) for drawing with one of the graphviz tools, including
dot (Gansner, 1993).

Returns: A character vector. Intended for passing to writeLines for saving as a text file.

Method as_gml(): Exports the digraph as a Graph Modelling Language (GML) stream.

Usage:
Digraph$as_gml()

Details: Intended to work with the igraph or DiagrammeR packages, which are able to import
GML files.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Digraph$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

References

Gansner ER, Koutsofios E, North SC, Vo K-P. A technique for drawing directed graphs. IEEE
Transactions on Software Engineering, 1993;19:214–30, doi:10.1109/32.221135.

Gross JL, Yellen J, Zhang P. Handbook of Graph Theory. Second edition, Chapman and Hall/CRC.;
2013, doi:10.1201/b16132.

Kahn AB, Topological Sorting of Large Networks, Communications of the ACM, 1962;5:558-562,
doi:10.1145/368996.369025.

https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://doi.org/10.1109/32.221135
https://doi.org/10.1201/b16132
https://doi.org/10.1145/368996.369025

DiracDistribution 29

DiracDistribution A Dirac delta function

Description

An R6 class representing a Dirac Delta function.

Details

A distribution modelled by a Dirac delta function δ(x− c) where c is the hyperparameter (value of
the constant). It has probability 1 that the value will be equal to c and zero otherwise. The mode,
mean, quantiles and random samples are all equal to c. It is acknowledged that there is debate
over whether Dirac delta functions are true distributions, but the assumption makes little practical
difference in this case. Inherits from class Distribution.

Super class

rdecision::Distribution -> DiracDistribution

Methods

Public methods:
• DiracDistribution$new()

• DiracDistribution$distribution()

• DiracDistribution$mode()

• DiracDistribution$mean()

• DiracDistribution$SD()

• DiracDistribution$quantile()

• DiracDistribution$sample()

• DiracDistribution$clone()

Method new(): Create a new Dirac Delta function distribution.

Usage:
DiracDistribution$new(const)

Arguments:
const The value at which the distribution is centred.

Returns: A new DiracDistribution object.

Method distribution(): Accessor function for the name of the distribution.

Usage:
DiracDistribution$distribution()

Returns: Distribution name as character string.

Method mode(): Return the mode of the distribution.

30 DiracDistribution

Usage:
DiracDistribution$mode()

Returns: Numeric Value where the distribution is centered.

Method mean(): Return the expected value of the distribution.

Usage:
DiracDistribution$mean()

Returns: Expected value as a numeric value.

Method SD(): Return the standard deviation of the distribution.

Usage:
DiracDistribution$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Quantiles of the distribution.

Usage:
DiracDistribution$quantile(probs)

Arguments:

probs Numeric vector of probabilities, each in range [0,1].

Details: For a Dirac Delta Function all quantiles are returned as the value at which the distri-
bution is centred.

Returns: Vector of numeric values of the same length as probs.

Method sample(): Draw and hold a random sample from the model variable.

Usage:
DiracDistribution$sample(expected = FALSE)

Arguments:

expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-
tion.

Returns: Updated distribution.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DiracDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

DirichletDistribution 31

DirichletDistribution A parametrized Dirichlet distribution

Description

An R6 class representing a multivariate Dirichlet distribution.

Details

A multivariate Dirichlet distribution. See https://en.wikipedia.org/wiki/Dirichlet_distribution
for details. Inherits from class Distribution.

Super class

rdecision::Distribution -> DirichletDistribution

Methods

Public methods:
• DirichletDistribution$new()

• DirichletDistribution$distribution()

• DirichletDistribution$mean()

• DirichletDistribution$mode()

• DirichletDistribution$quantile()

• DirichletDistribution$varcov()

• DirichletDistribution$sample()

• DirichletDistribution$clone()

Method new(): Create an object of class DirichletDistribution.

Usage:
DirichletDistribution$new(alpha)

Arguments:

alpha Parameters of the distribution; a vector of K numeric values each > 0, with K > 1.

Returns: An object of class DirichletDistribution.

Method distribution(): Accessor function for the name of the distribution.

Usage:
DirichletDistribution$distribution()

Returns: Distribution name as character string.

Method mean(): Mean value of each dimension of the distribution.

Usage:
DirichletDistribution$mean()

https://en.wikipedia.org/wiki/Dirichlet_distribution

32 DirichletDistribution

Returns: A numerical vector of length K.

Method mode(): Return the mode of the distribution.

Usage:
DirichletDistribution$mode()

Details: Undefined if any alpha is ≤ 1.

Returns: Mode as a vector of length K.

Method quantile(): Quantiles of the univariate marginal distributions.

Usage:
DirichletDistribution$quantile(probs)

Arguments:
probs Numeric vector of probabilities, each in range [0,1].

Details: The univariate marginal distributions of a Dirichlet distribution are Beta distributions.
This function returns the quantiles of each marginal. Note that these are not the true quantiles
of the multivariate Dirichlet.

Returns: A matrix of numeric values with the number of rows equal to the length of probs, the
number of columns equal to the order; rows are labelled with quantiles and columns with the
dimension (1, 2, etc).

Method varcov(): Variance-covariance matrix.

Usage:
DirichletDistribution$varcov()

Returns: A positive definite symmetric matrix of size K by K.

Method sample(): Draw and hold a random sample from the distribution.

Usage:
DirichletDistribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Returns: Void; sample is retrieved with call to r().

Method clone(): The objects of this class are cloneable with this method.

Usage:
DirichletDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

Distribution 33

Distribution A probability distribution

Description

An R6 class representing a (possibly multivariate) distribution.

Details

The base class for particular univariate or multivariate distributions.

Methods

Public methods:
• Distribution$new()

• Distribution$order()

• Distribution$distribution()

• Distribution$mean()

• Distribution$mode()

• Distribution$SD()

• Distribution$varcov()

• Distribution$quantile()

• Distribution$sample()

• Distribution$r()

• Distribution$clone()

Method new(): Create an object of class Distribution.

Usage:
Distribution$new(name, K = 1L)

Arguments:
name Name of the distribution ("Beta" etc.)
K Order of the distribution (1 = univariate, 2 = bivariate etc.). Must be an integer; use 1L, 3L

etc. to avoid an error.

Returns: An object of class Distribution.

Method order(): Order of the distribution

Usage:
Distribution$order()

Returns: Order (K).

Method distribution(): Description of the uncertainty distribution.

Usage:
Distribution$distribution()

34 Distribution

Details: Includes the distribution name and its parameters.

Returns: Distribution name and parameters as character string.

Method mean(): Mean value of the distribution.

Usage:
Distribution$mean()

Returns: Mean value as a numeric scalar (K = 1L) or vector of length K.

Method mode(): Return the mode of the distribution.

Usage:
Distribution$mode()

Details: By default returns NA, which will be the case for most because an arbitrary distribution
is not guaranteed to be unimodal.

Returns: Mode as a numeric scalar (K = 1L) or vector of length K.

Method SD(): Return the standard deviation of a univariate distribution.

Usage:
Distribution$SD()

Details: Only defined for univariate (K = 1L) distributions; for multivariate distributions, func-
tion varcov returns the variance-covariance matrix.

Returns: Standard deviation as a numeric value.

Method varcov(): Variance-covariance matrix.

Usage:
Distribution$varcov()

Returns: A positive definite symmetric matrix of size K by K, or a scalar for K = 1L, equal to the
variance.

Method quantile(): Marginal quantiles of the distribution.

Usage:
Distribution$quantile(probs)

Arguments:
probs Numeric vector of probabilities, each in range [0,1].

Details: If they are defined, this function returns the marginal quantiles of the multivariate
distribution; i.e. the quantiles of each univariate marginal distribution of the multivariate distri-
bution. For example, the univariate marginal distributions of a multivariate normal are univariate
normals, and the univariate marginal distributions of a Dirichlet distribution are Beta distribu-
tions. Note that these are not the true quantiles of a multivariate distribution, which are contours
for K = 2L, surfaces for K = 3L, etc. For example, the 2.5% and 97.5% marginal quantiles of a
bivariate normal distribution define a rectangle in x1, x2 space that will include more than 95%
of the distribution, whereas the contour containing 95% of the distribution is an ellipse.

Returns: For K = 1L a numeric vector of length equal to the length of probs, with each entry
labelled with the quantile. For K > 1L a matrix of numeric values with the number of rows
equal to the length of probs, the number of columns equal to the order; rows are labelled with
probabilities and columns with the dimension (1, 2, etc).

Edge 35

Method sample(): Draw and hold a random sample from the distribution.

Usage:
Distribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Returns: Void

Method r(): Return a random sample drawn from the distribution.

Usage:
Distribution$r()

Details: Returns the sample generated at the last call to sample.

Returns: A vector of length K representing one sample.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Distribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

Edge An edge in a graph

Description

An R6 class representing an edge in a graph.

Details

Edges are the formal term for links between pairs of nodes in a graph. A base class.

Methods

Public methods:
• Edge$new()

• Edge$is_same_edge()

• Edge$endpoints()

• Edge$label()

• Edge$modvars()

36 Edge

• Edge$clone()

Method new(): Create an object of type Edge.

Usage:
Edge$new(v1, v2, label = "")

Arguments:
v1 Node at one endpoint of the edge.
v2 Node at the other endpoint of the edge.
label Character string containing the edge label.

Returns: A new Edge object.

Method is_same_edge(): Is this edge the same as the argument?

Usage:
Edge$is_same_edge(e)

Arguments:
e edge to compare with this one

Returns: TRUE if e is also this one.

Method endpoints(): Retrieve the endpoints of the edge.

Usage:
Edge$endpoints()

Returns: List of two nodes to which the edge is connected.

Method label(): Access label.

Usage:
Edge$label()

Returns: Label of the edge; character string.

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with this Edge.

Usage:
Edge$modvars()

Returns: An empty list for the base class.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Edge$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

EmpiricalDistribution 37

EmpiricalDistribution An empirical distribution

Description

An R6 class representing an empirical (1D) distribution.

Details

An object representing an empirical distribution. It inherits from class Distribution.

Super class

rdecision::Distribution -> EmpiricalDistribution

Methods

Public methods:
• EmpiricalDistribution$new()

• EmpiricalDistribution$distribution()

• EmpiricalDistribution$mean()

• EmpiricalDistribution$mode()

• EmpiricalDistribution$SD()

• EmpiricalDistribution$sample()

• EmpiricalDistribution$quantile()

• EmpiricalDistribution$clone()

Method new(): Create an object of class EmpiricalDistribution.

Usage:
EmpiricalDistribution$new(x, interpolate.sample = TRUE)

Arguments:

x a sample of at least 1 numerical value from the population of interest.
interpolate.sample Logical; if true, each call to sample() make a random draw from U0,1

to find a p value, then finds that quantile of the sample, using the quantile function in R,
via interpolation from the eCDF. If false, the sample() function makes a random draw from
x.

Details: Empirical distributions based on very small sample sizes are supported, but not rec-
ommended.

Returns: An object of class EmpiricalDistribution.

Method distribution(): Accessor function for the name of the distribution.

Usage:
EmpiricalDistribution$distribution()

38 EmpiricalDistribution

Returns: Distribution name as character string.

Method mean(): Return the expected value of the distribution.

Usage:
EmpiricalDistribution$mean()

Returns: Expected value as a numeric value.

Method mode(): Return the mode of the distribution,

Usage:
EmpiricalDistribution$mode()

Returns: NA because an empirical distribution is not guaranteed to be unimodal.

Method SD(): Return the standard deviation of the distribution.

Usage:
EmpiricalDistribution$SD()

Returns: Standard deviation as a numeric value

Method sample(): Draw and hold a random sample from the distribution.

Usage:
EmpiricalDistribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Details: Samples with interpolation or by random draw from the supplied distribution (see
parameter interpolate.sample in new()).

Returns: Updated distribution.

Method quantile(): Return the quantiles of the empirical uncertainty distribution.

Usage:
EmpiricalDistribution$quantile(probs)

Arguments:
probs Vector of probabilities, in range [0,1].

Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.

Usage:
EmpiricalDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

ExprModVar 39

ExprModVar A model variable constructed from an expression of other variables

Description

An R6 class representing a model variable constructed from an expression involving other variables.

Details

A class to support expressions involving objects of base class ModVar, which itself behaves like a
model variable. For example, if A and B are variables with base class ModVar and c is a variable of
type numeric, then it is not possible to write, for example, x <- 42*A/B + c, because R cannot ma-
nipulate class variables using the same operators as regular variables. But such forms of expression
may be desirable in constructing a model and this class provides a mechanism for doing so. Inherits
from class ModVar.

Super class

rdecision::ModVar -> ExprModVar

Methods

Public methods:

• ExprModVar$new()

• ExprModVar$add_method()

• ExprModVar$is_probabilistic()

• ExprModVar$operands()

• ExprModVar$distribution()

• ExprModVar$mean()

• ExprModVar$mode()

• ExprModVar$SD()

• ExprModVar$quantile()

• ExprModVar$mu_hat()

• ExprModVar$sigma_hat()

• ExprModVar$q_hat()

• ExprModVar$set()

• ExprModVar$get()

• ExprModVar$clone()

Method new(): Create a ModVar formed from an expression involving other model variables.

Usage:
ExprModVar$new(description, units, quo, nemp = 1000L)

Arguments:

40 ExprModVar

description Name for the model variable expression. In a complex model it may help to
tabulate how model variables are combined into costs, probabilities and rates.

units Units in which the variable is expressed.
quo A quosure (see package rlang), which contains an expression and its environment. The

usage is quo(x+y) or rlang::quo(x+y).
nemp sample size of the empirical distribution which will be associated with the expression, and

used to estimate values for mu_hat, sigma_hat and q_hat.

Returns: An object of type ExprModVar

Method add_method(): Create a new quosure from that supplied in new() but with each
ModVar operand appended with $x where x is the argument to this function.

Usage:
ExprModVar$add_method(method = "mean()")

Arguments:

method A character string with the method, e.g. "mean()".

Details: This method is mostly intended for internal use within the class and will not generally
be needed for normal use of ExprModVar objects. The returned expression is not syntactically
checked or evaluated before it is returned.

Returns: A quosure whose expression is each ModVar v in the expression replaced with
v$method and the same environment as specified in the quosure supplied in new().

Method is_probabilistic(): Tests whether the model variable is probabilistic, i.e. a random
variable that follows a distribution, or an expression involving random variables, at least one of
which follows a distribution.

Usage:
ExprModVar$is_probabilistic()

Returns: TRUE if probabilistic

Method operands(): Return a list of operands.

Usage:
ExprModVar$operands(recursive = TRUE)

Arguments:

recursive Whether to include nested variables in the list.

Details: Finds operands that are themselves ModVars in the expression. if recursive=TRUE,
the list includes all ModVars that are operands of expression operands, recursively.

Returns: A list of model variables.

Method distribution(): Accessor function for the name of the expression model variable.

Usage:
ExprModVar$distribution()

Returns: Expression as a character string with all control characters having been removed.

ExprModVar 41

Method mean(): Return the value of the expression when its operands take their mean value
(i.e. value returned by call to mean or their value, if numeric). See notes on this class for further
explanation.

Usage:
ExprModVar$mean()

Returns: Mean value as a numeric value.

Method mode(): Return the mode of the variable. By default returns NA, which will be the case
for most ExprModVar variables, because an arbitrary expression is not guaranteed to be unimodal.

Usage:
ExprModVar$mode()

Returns: Mode as a numeric value.

Method SD(): Return the standard deviation of the distribution as NA because the variance is not
available as a closed form for all functions of distributions.

Usage:
ExprModVar$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Find quantiles of the uncertainty distribution. Not available as a closed
form, and returned as NA.

Usage:
ExprModVar$quantile(probs)

Arguments:

probs Numeric vector of probabilities, each in range [0,1].

Returns: Vector of numeric values of the same length as probs.

Method mu_hat(): Return the estimated expected value of the variable.

Usage:
ExprModVar$mu_hat()

Details: This is computed by numerical simulation because there is, in general, no closed
form expressions for the mean of a function of distributions. It is derived from the empirical
distribution associated with the object.

Returns: Expected value as a numeric value.

Method sigma_hat(): Return the estimated standard deviation of the distribution.

Usage:
ExprModVar$sigma_hat()

Details: This is computed by numerical simulation because there is, in general, no closed form
expressions for the SD of a function of distributions. It is derived from the empirical distribution
associated with the object.

Returns: Standard deviation as a numeric value.

42 ExprModVar

Method q_hat(): Return the estimated quantiles by sampling the variable.
Usage:
ExprModVar$q_hat(probs)

Arguments:
probs Vector of probabilities, in range [0,1].

Details: This is computed by numerical simulation because there is, in general, no closed form
expressions for the quantiles of a function of distributions. The quantiles are derived from the
empirical distribution associated with the object.

Returns: Vector of quantiles.

Method set(): Sets the value of the ExprModVar.
Usage:
ExprModVar$set(what = "random", val = NULL)

Arguments:
what Until set is called again, subsequent calls to get will return a value determined by the

what parameter. as follows:
"random" a random sample is derived by taking a random sample from each of the operands

and evaluating the expression. It does not draw from the empirical distribution because
of the possibility of nested autocorrelation. For example, if z = xy, where x is a model
variable and y is an expression which involves x, then y and x are correlated and will
produce a different distribution for z than if x and y were independent. However, if z
was sampled from the empirical distribution of y and the uncertainty distribution of x
independently, the effect of correlation would be lost;

"expected" the value of the expression when each of its operands takes its expected value.
This will not - in general - be the mean of the uncertainty distribution for the expression
which can be estimated by calling mu_hat;

"q2.5" the value of the expression when each of its operands is equal to the 2.5th centile
of their own uncertainty distribution. In general, this will be a more extreme value than
the 2.5th centile of the uncertainty distribution of the expression, which can be found by
using q_hat(p=0.025);

"q50" as per "q2.5" but for the 50th centile (median);
"q97.5" as per "q2.5" but for the 97.5th centile;
"current" leaves the what parameter of method set unchanged for each operand and

causes the expression to be re-evaluated at subsequent calls to get. Thus, after calling
set(what="current") for the expression, subsequent calls to get for the expression
may not return the same value, if method set has been called for one or more operands
in the meantime;

"value" sets the value of the expression to be equal to parameter val. This is not recom-
mended for normal usage because it allows the model variable to be set to an implausible
value, based on its defined uncertainty. An example of where this may be needed is in
threshold finding.

val A numeric value, only used with what="value", ignored otherwise.

Details: The available options for parameter what are identical to those available for the set
method of ModVar. However, because an ExprModVar represents the left hand side of an ex-
pression involving operands, the effect of some options is different from its effect on a non-
expression ModVar.

ExprModVar 43

Returns: Updated ExprModVar.

Method get(): Gets the value of the ExprModVar that was set by the most recent call to set().

Usage:
ExprModVar$get()

Returns: Value determined by last set().

Method clone(): The objects of this class are cloneable with this method.

Usage:
ExprModVar$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

For many expressions involving model variables there will be no closed form expressions for the
mean, standard deviation and the quantiles. When an ExprModVar is created, an empirical distri-
bution is generated by repeatedly drawing a random sample from each operand and evaluating the
expression. The empirical distribution, which becomes associated with the object, is used to pro-
vide estimates of the mean, standard deviation and the quantiles via functions mu_hat, sigma_hat
and q_hat.

For consistency with ModVars which are not expressions, the function mean returns the value of the
expression when all its operands take their mean values. This will, in general, not be the mean of
the expression distribution (which can be obtained via mu_hat), but is the value normally used in
the base case of a model as the point estimate. As Briggs et al note (section 4.1.1) "in all but the
most non-linear models, the difference between the expectation over the output of a probabilistic
model and that model evaluated at the mean values of the input parameters, is likely to be modest."

Functions SD, mode and quantile return NA because they do not necessarily have a closed form.
The standard deviation can be estimated by calling sigma_hat and the quantiles by q_hat. Because
a unimodal distribution is not guaranteed, there is no estimator provided for the mode.

Method distribution returns the string representation of the expression used to create the model
variable.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

44 GammaDistribution

GammaDistribution A parametrized Gamma distribution

Description

An R6 class representing a Gamma distribution.

Details

An object representing a Gamma distribution with hyperparameters shape (k) and scale (theta).
In econometrics this parametrization is more common but in Bayesian statistics the shape (alpha)
and rate (beta) parametrization is more usual. Note, however, that although Briggs et al (2006)
use the shape, scale formulation, they use alpha, beta as parameter names. Inherits from class
Distribution.

Super class

rdecision::Distribution -> GammaDistribution

Methods

Public methods:
• GammaDistribution$new()

• GammaDistribution$distribution()

• GammaDistribution$mean()

• GammaDistribution$mode()

• GammaDistribution$SD()

• GammaDistribution$sample()

• GammaDistribution$quantile()

• GammaDistribution$clone()

Method new(): Create an object of class GammaDistribution.

Usage:
GammaDistribution$new(shape, scale)

Arguments:

shape shape parameter of the Gamma distribution.
scale scale parameter of the Gamma distribution.

Returns: An object of class GammaDistribution.

Method distribution(): Accessor function for the name of the distribution.

Usage:
GammaDistribution$distribution()

Returns: Distribution name as character string.

GammaDistribution 45

Method mean(): Return the expected value of the distribution.

Usage:
GammaDistribution$mean()

Returns: Expected value as a numeric value.

Method mode(): Return the mode of the distribution (if shape >= 1)

Usage:
GammaDistribution$mode()

Returns: mode as a numeric value.

Method SD(): Return the standard deviation of the distribution.

Usage:
GammaDistribution$SD()

Returns: Standard deviation as a numeric value

Method sample(): Draw and hold a random sample from the distribution.

Usage:
GammaDistribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Returns: Updated distribution.

Method quantile(): Return the quantiles of the Gamma uncertainty distribution.

Usage:
GammaDistribution$quantile(probs)

Arguments:
probs Vector of probabilities, in range [0,1].

Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GammaDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

46 GammaModVar

GammaModVar A model variable whose uncertainty follows a Gamma distribution

Description

An R6 class for a model variable with Gamma uncertainty.

Details

A model variable for which the uncertainty in the point estimate can be modelled with a Gamma dis-
tribution. The hyperparameters of the distribution are the shape (k) and the scale (theta). Note that
although Briggs et al (2006) use the shape, scale formulation, they use alpha, beta as parameter
names. Inherits from class ModVar.

Super class

rdecision::ModVar -> GammaModVar

Methods

Public methods:
• GammaModVar$new()

• GammaModVar$is_probabilistic()

• GammaModVar$clone()

Method new(): Create an object of class GammaModVar.
Usage:
GammaModVar$new(description, units, shape, scale)

Arguments:
description A character string describing the variable.
units Units of the variable, as character string.
shape shape parameter of the Gamma distribution.
scale scale parameter of the Gamma distribution.
Returns: An object of class GammaModVar.

Method is_probabilistic(): Tests whether the model variable is probabilistic, i.e., a random
variable that follows a distribution, or an expression involving random variables, some of which
follow distributions.

Usage:
GammaModVar$is_probabilistic()

Returns: TRUE if probabilistic

Method clone(): The objects of this class are cloneable with this method.
Usage:
GammaModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

gbp 47

Note

The Gamma model variable class can be used to model the uncertainty of the mean of a count
quantity which follows a Poisson distribution. The Gamma distribution is the conjugate prior of a
Poisson distribution, and the shape and scale relate directly to the number of intervals from which
the mean count has been estimated. Specifically, the shape (k) is equal to the total count of events
in 1/θ intervals, where θ is the scale. For example, if 200 counts were observed in a sample of 100
intervals, setting shape=200 and scale=1/100 gives a Gamma distribution with a mean of 2 and a
95% confidence interval from 1.73 to 2.29.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

gbp Write a monetary value

Description

Formats a number, or list of numbers, into currency.

Usage

gbp(x, p = FALSE, char = TRUE)

Arguments

x Monetary value, or list of values
p Logical; if TRUE show value to nearest penny, cent etc. If FALSE show it to the

nearest pound, dollar, euro etc.
char Logical; if TRUE format the currency values into a character vector, with pretty

printing, including comma separators for thousands, otherwise convert to rounded
numeric values.

Details

If x is defined using the c() operator and contains one or more character elements, all elements of
x will be coerced to characters, and this function will return "NA" for all elements. It is safer to
define x as a list, in which all non-numeric elements will be translated to "NA".

Value

A character vector with pretty formatted currency values (if char is TRUE), or a vector of rounded
numeric values.

48 Graph

Graph An undirected graph

Description

An R6 class to represent a graph (from discrete mathematics).

Details

Encapsulates and provides methods for computation and checking of undirected graphs. Graphs are
systems of vertices connected in pairs by edges. A base class.

Value

A GML stream as a character vector.

Methods

Public methods:
• Graph$new()

• Graph$order()

• Graph$size()

• Graph$vertexes()

• Graph$vertex_along()

• Graph$vertex_index()

• Graph$vertex_at()

• Graph$has_vertex()

• Graph$vertex_label()

• Graph$edges()

• Graph$edge_along()

• Graph$edge_index()

• Graph$edge_at()

• Graph$has_edge()

• Graph$edge_label()

• Graph$graph_adjacency_matrix()

• Graph$is_simple()

• Graph$is_connected()

• Graph$is_acyclic()

• Graph$is_tree()

• Graph$degree()

• Graph$neighbours()

• Graph$as_DOT()

• Graph$as_gml()

Graph 49

• Graph$clone()

Method new(): Create a new Graph object from sets of nodes and edges.

Usage:
Graph$new(V, E)

Arguments:

V An unordered set of Nodes, as a list.
E An unordered set of Edges, as a list.

Returns: A Graph object.

Method order(): Return the order of the graph (number of vertices).

Usage:
Graph$order()

Returns: Order of the graph (integer).

Method size(): Return the size of the graph (number of edges).

Usage:
Graph$size()

Returns: Size of the graph (integer).

Method vertexes(): A list of all the Node objects in the graph.

Usage:
Graph$vertexes()

Details: The list of Node objects is returned in the same order as their indexes understood
by vertex_index, vertex_at and vertex_along, which is not necessarily the same order in
which they were supplied in the V argument to new.

Method vertex_along(): Sequence of vertex indices.

Usage:
Graph$vertex_along()

Details: Similar to base::seq_along, this function provides the indices of the vertices in the
graph. It is intended for use by graph algorithms which iterate vertices.

Returns: A numeric vector of indices from 1 to the order of the graph. The vertex at index i is
not guaranteed to be the same vertex at V[[i]] of the argument V to new (i.e., the order in which
the vertices are stored internally within the class may differ from the order in which they were
supplied).

Method vertex_index(): Find the index of a vertex in the graph.

Usage:
Graph$vertex_index(v)

Arguments:

v A vertex, or list of vertexes.

50 Graph

Returns: Index of v. The index of vertex v is the one used internally to the class object, which
is not necessarily the same as the order of vertices in the V argument of new. NA if v is not a
vertex, or is a vertex that is not in the graph.

Method vertex_at(): Find the vertex at a given index.

Usage:
Graph$vertex_at(index, as_list = FALSE)

Arguments:

index Index of vertex in the graph, as an integer, or vector of integers.
as_list Boolean. If TRUE the method returns list of Nodes, even if the length of index is 1.

Details: The inverse of function vertex_index. The function will raise an abort signal if all
the supplied indexes are not vertexes. The function is vectorized, but for historical compatibility
the return object is a single Node if index is a scalar. The return object can be guaranteed to be
a list if as_list is set.

Returns: Node at index if index is a scalar, a list of Nodes at the values of index if index is
a vector, or an empty list if index is an empty array.

Method has_vertex(): Test whether a vertex is an element of the graph.

Usage:
Graph$has_vertex(v)

Arguments:

v Vertex, or list of vertices.

Returns: A logical scalar or logical vector the same length as v if v is a vector, with TRUE if v
is an element of V(G).

Method vertex_label(): Find label of vertexes at index i.

Usage:
Graph$vertex_label(iv)

Arguments:

iv Index of vertex, or vector of indexes.

Returns: Label(s) of vertex at index i

Method edges(): A list of all the Edge objects in the graph.

Usage:
Graph$edges()

Details: The list of Edge objects is returned in the same order as their indexes understood by
edge_index, edge_at and edge_along, which is not necessarily the same order in which they
were supplied in the E argument to new.

Method edge_along(): Sequence of edge indices.

Usage:
Graph$edge_along()

Graph 51

Details: Similar to base::seq_along, this function provides the indices of the edges in
the graph. It is intended for use by graph algorithms which iterate edges. It is equivalent to
seq_along(g$edges()), where g is a graph.

Returns: A numeric vector of indices from 1 to the size of the graph. The edge at index i is
not guaranteed to be the same edge at E[[i]] of the argument E to new (i.e., the order in which
the edges are stored internally within the class may differ from the order in which they were
supplied).

Method edge_index(): Find the index of an edge in a graph.

Usage:
Graph$edge_index(e)

Arguments:

e An edge object, or list of edge objects.

Details: The index of edge e is the one used internally to the class object, which is not neces-
sarily the same as the order of edges in the E argument of new.

Returns: Index of e. NA if e is not an edge, or is an edge that is not in the graph.

Method edge_at(): Find the edge at a given index.

Usage:
Graph$edge_at(index, as_list = FALSE)

Arguments:

index Index of edge in the graph, as an integer, vector of integers, or list of integers.
as_list Boolean. If TRUE the method returns list of Edges, even if the length of index is 1.

Details: The inverse of function edge_index. The function will raise an abort signal if the
supplied index is not an edge. The function is vectorized, but for historical compatibility the
return object is a single Edge if index is a scalar. The return object can be guaranteed to be a
list if as_list is set.

Returns: The edge, or list of edges, with the specified index.

Method has_edge(): Test whether an edge is an element of the graph.

Usage:
Graph$has_edge(e)

Arguments:

e Edge or list of edges.

Returns: Logical vector with each element TRUE if the corresponding element of e is an element
of E(G).

Method edge_label(): Find label of edge at index i

Usage:
Graph$edge_label(ie)

Arguments:

ie Index of edge, or vector of indexes.

52 Graph

Returns: Label of edge at index i, or character vector with the labels at indexes ie.

Method graph_adjacency_matrix(): Compute the adjacency matrix for the graph.

Usage:
Graph$graph_adjacency_matrix(boolean = FALSE)

Arguments:
boolean If TRUE, the adjacency matrix is logical, each cell is {FALSE, TRUE}.

Details: Each cell contains the number of edges joining the two vertexes, with the convention
of self loops being counted twice, unless binary is TRUE when cells are either 0 (not adjacent)
or 1 (adjacent).

Returns: A square integer matrix with the number of rows and columns equal to the order of
the graph. The rows and columns are labelled with the node labels, if all the nodes in the graph
have unique labels, or the node indices if not.

Method is_simple(): Is this a simple graph?

Usage:
Graph$is_simple()

Details: A simple graph has no self loops or multi-edges.

Returns: TRUE if simple, FALSE if not.

Method is_connected(): Test whether the graph is connected.

Usage:
Graph$is_connected()

Details: Graphs with no vertices are considered unconnected; graphs with 1 vertex are consid-
ered connected. Otherwise a graph is connected if all nodes can be reached from an arbitrary
starting point. Uses a depth first search.

Returns: TRUE if connected, FALSE if not.

Method is_acyclic(): Checks for the presence of a cycle in the graph.

Usage:
Graph$is_acyclic()

Details: Uses a depth-first search from each node to detect the presence of back edges. A back
edge is an edge from the current node joining a previously detected (visited) node, that is not
the parent node of the current one.

Returns: TRUE if no cycles detected.

Method is_tree(): Compute whether the graph is connected and acyclic.

Usage:
Graph$is_tree()

Returns: TRUE if the graph is a tree; FALSE if not.

Method degree(): The degree of a vertex in the graph.

Usage:

Graph 53

Graph$degree(v)

Arguments:

v The subject node.

Details: The number of incident edges.

Returns: Degree of the vertex, integer.

Method neighbours(): Find the neighbours of a node.

Usage:
Graph$neighbours(v)

Arguments:

v The subject node (scalar, not a list).

Details: A property of the graph, not the node. Does not include self, even in the case of a loop
to self.

Returns: A list of nodes which are joined to the subject.

Method as_DOT(): Export a representation of the graph in DOT format.

Usage:
Graph$as_DOT(rankdir = "LR", width = 7, height = 7)

Arguments:

rankdir One of "LR" (default), "TB", "RL" or "BT".
width of the drawing, in inches
height of the drawing, in inches

Details: Writes the representation in the graphviz DOT language (https://graphviz.org/
doc/info/lang.html) for drawing with one of the graphviz tools including dot (Gansner,
1993).

Returns: A character vector. Intended for passing to writeLines for saving as a text file.

Method as_gml(): Exports the digraph as a Graph Modelling Language (GML) stream.

Usage:
Graph$as_gml()

Details: Intended to work with the igraph or DiagrammeR packages, which are able to import
GML files.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Graph$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

54 LeafNode

References

Gansner ER, Koutsofios E, North SC, Vo K-P. A technique for drawing directed graphs. IEEE
Transactions on Software Engineering, 1993;19:214–30, doi:10.1109/32.221135.

Gross JL, Yellen J, Zhang P. Handbook of Graph Theory. Second edition, Chapman and Hall/CRC.;
2013, doi:10.1201/b16132

LeafNode A leaf node in a decision tree

Description

An R6 class representing a leaf (terminal) node in a decision tree.

Details

Represents a terminal state in a tree, and is associated with an incremental utility. Inherits from
class Node.

Super class

rdecision::Node -> LeafNode

Methods

Public methods:
• LeafNode$new()

• LeafNode$modvars()

• LeafNode$set_utility()

• LeafNode$set_interval()

• LeafNode$utility()

• LeafNode$interval()

• LeafNode$QALY()

• LeafNode$clone()

Method new(): Create a new LeafNode object; synonymous with a clinical outcome.

Usage:
LeafNode$new(
label,
utility = 1,
interval = as.difftime(365.25, units = "days")

)

Arguments:
label Character string; a label for the state; must be defined because it is used in tabulations.

The label is automatically converted to a syntactically valid (in R) name to ensure it can be
used as a column name in a data frame.

https://doi.org/10.1109/32.221135
https://doi.org/10.1201/b16132

LeafNode 55

utility The incremental utility that a user associates with being in the health state for the
interval. Intended for use with cost benefit analysis. Can be numeric or a type of ModVar.
If the type is numeric, the allowed range is -Inf to 1; if it is of type ModVar, it is unchecked.

interval The time interval over which the utility parameter applies, expressed as an R
difftime object; default 1 year.

Returns: A new LeafNode object

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with this LeafNode. Includes operands of these ModVars, if they are expressions.

Usage:
LeafNode$modvars()

Returns: A list of ModVars.

Method set_utility(): Set the incremental utility associated with the node.

Usage:
LeafNode$set_utility(utility)

Arguments:

utility The incremental utility that a user associates with being in the health state for the
interval. Intended for use with cost benefit analysis. Can be numeric or a type of ModVar.
If the type is numeric, the allowed range is -Inf to 1, not NA; if it is of type ModVar, it is
unchecked.

Returns: Updated Leaf object.

Method set_interval(): Set the time interval associated with the node.

Usage:
LeafNode$set_interval(interval)

Arguments:

interval The time interval over which the utility parameter applies, expressed as an R
difftime object; default 1 year, not NA.

Returns: Updated Leaf object.

Method utility(): Return the incremental utility associated with being in the state for the
interval.

Usage:
LeafNode$utility()

Returns: Incremental utility (numeric value).

Method interval(): Return the interval associated with being in the state.

Usage:
LeafNode$interval()

Returns: Interval (as a difftime).

Method QALY(): Return the quality adjusted life years associated with being in the state.

56 LogNormDistribution

Usage:
LeafNode$QALY()

Returns: QALY.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LeafNode$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

LogNormDistribution A parametrized log Normal probability distribution

Description

An R6 class representing a log Normal distribution.

Details

A parametrized Log Normal distribution inheriting from class Distribution. Swat (2017) defined
seven parametrizations of the log normal distribution. These are linked, allowing the parameters of
any one to be derived from any other. All 7 parametrizations require two parameters as follows:

LN1 p1 = µ, p2 = σ, where µ and σ are the mean and standard deviation, both on the log scale.

LN2 p1 = µ, p2 = v, where µ and v are the mean and variance, both on the log scale.

LN3 p1 = m, p2 = σ, where m is the median on the natural scale and σ is the standard deviation
on the log scale.

LN4 p1 = m, p2 = cv , where m is the median on the natural scale and cv is the coefficient of
variation on the natural scale.

LN5 p1 = µ, p2 = τ , where µ is the mean on the log scale and τ is the precision on the log scale.

LN6 p1 = m, p2 = σg , where m is the median on the natural scale and σg is the geometric standard
deviation on the natural scale.

LN7 p1 = µN , p2 = σN , where µN is the mean on the natural scale and σN is the standard
deviation on the natural scale.

Super class

rdecision::Distribution -> LogNormDistribution

LogNormDistribution 57

Methods

Public methods:
• LogNormDistribution$new()

• LogNormDistribution$distribution()

• LogNormDistribution$sample()

• LogNormDistribution$mean()

• LogNormDistribution$mode()

• LogNormDistribution$SD()

• LogNormDistribution$quantile()

• LogNormDistribution$clone()

Method new(): Create a log normal distribution.

Usage:
LogNormDistribution$new(p1, p2, parametrization = "LN1")

Arguments:
p1 First hyperparameter, a measure of location. See Details.
p2 Second hyperparameter, a measure of spread. See Details.
parametrization A character string taking one of the values "LN1" (default) through "LN7"

(see Details).

Returns: A LogNormDistribution object.

Method distribution(): Accessor function for the name of the distribution.

Usage:
LogNormDistribution$distribution()

Returns: Distribution name as character string ("LN1", "LN2" etc.).

Method sample(): Draw a random sample from the model variable.

Usage:
LogNormDistribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Returns: Updated LogNormDistribution object.

Method mean(): Return the expected value of the distribution.

Usage:
LogNormDistribution$mean()

Returns: Expected value as a numeric value.

Method mode(): Return the point estimate of the variable.

Usage:
LogNormDistribution$mode()

58 LogNormDistribution

Returns: Point estimate (mode) of the log normal distribution.

Method SD(): Return the standard deviation of the distribution.

Usage:
LogNormDistribution$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Return the quantiles of the log normal distribution.

Usage:
LogNormDistribution$quantile(probs)

Arguments:

probs Vector of probabilities, in range [0,1].

Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LogNormDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

The log normal distribution may be used to model the uncertainty in an estimate of relative risk
(Briggs 2006, p90). If a relative risk estimate is available with a 95% confidence interval, the
"LN7" parametrization allows the uncertainty distribution to be specified directly. For example,
if RR = 0.67 with 95% confidence interval 0.53 to 0.84 (Leaper, 2016), it can be modelled with
LogNormModVar$new("rr", "RR", p1=0.67,p2=(0.84-0.53)/(2*1.96)), "LN7").

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K and Sculpher M. Decision Modelling for Health Economic Evaluation. Oxford
2006, ISBN 978-0-19-852662-9.

Leaper DJ, Edmiston CE and Holy CE. Meta-analysis of the potential economic impact following
introduction of absorbable antimicrobial sutures. British Journal of Surgery 2017;104:e134-e144.

Swat MJ, Grenon P and Wimalaratne S. Ontology and Knowledge Base of Probability Distributions.
Bioinformatics 2016;32:2719-2721, doi:10.1093/bioinformatics/btw170.

https://doi.org/10.1093/bioinformatics/btw170

LogNormModVar 59

LogNormModVar A model variable whose uncertainty follows a log Normal distribution

Description

An R6 class representing a model variable with log Normal uncertainty.

Details

A model variable for which the uncertainty in the point estimate can be modelled with a log Normal
distribution. One of seven parametrizations defined by Swat et al can be used. Inherits from ModVar.

Super class

rdecision::ModVar -> LogNormModVar

Methods

Public methods:
• LogNormModVar$new()

• LogNormModVar$is_probabilistic()

• LogNormModVar$clone()

Method new(): Create a model variable with log normal uncertainty.
Usage:
LogNormModVar$new(description, units, p1, p2, parametrization = "LN1")

Arguments:
description A character string describing the variable.
units Units of the quantity; character string.
p1 First hyperparameter, a measure of location. See Details.
p2 Second hyperparameter, a measure of spread. See Details.
parametrization A character string taking one of the values "LN1" (default) through "LN7"

(see Details).
Returns: A LogNormModVar object.

Method is_probabilistic(): Tests whether the model variable is probabilistic, i.e., a random
variable that follows a distribution, or an expression involving random variables, some of which
follow distributions.

Usage:
LogNormModVar$is_probabilistic()

Returns: TRUE if probabilistic

Method clone(): The objects of this class are cloneable with this method.
Usage:
LogNormModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

60 MarkovState

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K and Sculpher M. Decision Modelling for Health Economic Evaluation. Oxford
2006, ISBN 978-0-19-852662-9.

Leaper DJ, Edmiston CE and Holy CE. Meta-analysis of the potential economic impact following
introduction of absorbable antimicrobial sutures. British Journal of Surgery 2017;104:e134-e144.

Swat MJ, Grenon P and Wimalaratne S. Ontology and Knowledge Base of Probability Distributions.
Bioinformatics 2016;32:2719-2721, doi:10.1093/bioinformatics/btw170.

See Also

LogNormDistribution.

MarkovState A state in a Markov model

Description

An R6 class representing a state in a Markov model.

Details

Represents a single state in a Markov model. A Markov model is a digraph in which states are
nodes and transitions are arrows. Inherits from class Node.

Value

Updated MarkovState object.

Annual cost; numeric.

Updated MarkovState object.

Utility; numeric.

Super class

rdecision::Node -> MarkovState

https://doi.org/10.1093/bioinformatics/btw170

MarkovState 61

Methods

Public methods:
• MarkovState$new()

• MarkovState$name()

• MarkovState$set_cost()

• MarkovState$cost()

• MarkovState$set_utility()

• MarkovState$utility()

• MarkovState$modvars()

• MarkovState$clone()

Method new(): Create an object of type MarkovState.

Usage:
MarkovState$new(name, cost = 0, utility = 1)

Arguments:
name The name of the state (character string).
cost The annual cost of state occupancy (numeric or ModVar). Default 0.0.
utility The utility associated with being in the state (numeric or ModVar).

Details: Utility must be in the range [-Inf,1]. If it is of type numeric, the range is checked
on object creation.

Returns: An object of type MarkovState.

Method name(): Accessor function to retrieve the state name.

Usage:
MarkovState$name()

Returns: State name.

Method set_cost(): Set the annual occupancy cost.

Usage:
MarkovState$set_cost(cost)

Arguments:
cost The annual cost of state occupancy

Method cost(): Gets the annual cost of state occupancy.

Usage:
MarkovState$cost()

Method set_utility(): Set the utility of the state.

Usage:
MarkovState$set_utility(utility)

Arguments:
utility The utility associated with being in the state (numeric or ModVar).

62 ModVar

Method utility(): Gets the utility associated with the state.

Usage:
MarkovState$utility()

Method modvars(): Find all the model variables.

Usage:
MarkovState$modvars()

Details: Find variables of type ModVar that have been specified as values associated with this
MarkovState. Includes operands of these ModVars, if they are expressions.

Returns: A list of ModVars.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MarkovState$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

ModVar A model variable incorporating uncertainty

Description

An R6 class for a variable in a health economic model.

Details

Base class for a variable used in a health economic model. The base class wraps a numerical value
which is used in calculations. It provides a framework for creating classes of model variables whose
uncertainties are described by statistical distributions parametrized with hyperparameters.

Methods

Public methods:
• ModVar$new()

• ModVar$is_expression()

• ModVar$is_probabilistic()

• ModVar$description()

• ModVar$units()

• ModVar$distribution()

• ModVar$mean()

ModVar 63

• ModVar$mode()

• ModVar$SD()

• ModVar$quantile()

• ModVar$r()

• ModVar$set()

• ModVar$get()

• ModVar$clone()

Method new(): Create an object of type ModVar.

Usage:
ModVar$new(description, units, D = NULL, k = 1L)

Arguments:

description A character string description of the variable and its role in the model. This
description will be used in a tabulation of the variables linked to a model.

units A character string description of the units, e.g. "GBP", "per year".
D The distribution representing the uncertainty in the variable. Should inherit from class Distribution,

or NULL if none is defined.
k The index of the dimension of the multivariate distribution that applies to this model variable.

Details: A ModVar is associated with an uncertainty distribution (a "has-a" relationship in
object-oriented terminology). There can be a 1-1 mapping of ModVars to Distributions, or
several model variables can be linked to the same distribution in a many-1 mapping, e.g. when
each transition probability from a Markov state is represented as a ModVar and each can be
linked to the k dimensions of a common multivariate Dirichlet distribution.

Returns: A new ModVar object.

Method is_expression(): Is this ModVar an expression?

Usage:
ModVar$is_expression()

Returns: TRUE if it inherits from ExprModVar, FALSE otherwise.

Method is_probabilistic(): Is the model variable probabilistic?

Usage:
ModVar$is_probabilistic()

Details: Tests whether the model variable is probabilistic, i.e. a random variable that follows a
distribution, or an expression involving random variables, some of which follow distributions.

Returns: TRUE if probabilistic

Method description(): Accessor function for the description.

Usage:
ModVar$description()

Returns: Description of model variable as character string.

Method units(): Accessor function for units.

64 ModVar

Usage:
ModVar$units()

Returns: Description of units as character string.

Method distribution(): Name and parameters of the uncertainty distribution.

Usage:
ModVar$distribution()

Details: If K > 1 the dimension of the distribution associated with this model variable is ap-
pended, e.g. Dir(2,3)[1] means that the model variable is associated with the first dimension
of a 2D Dirichlet distribution with alpha parameters 2 and 3.

Returns: Distribution name as character string.

Method mean(): Mean value of the model variable.

Usage:
ModVar$mean()

Returns: Mean value as a numeric value.

Method mode(): The mode of the variable.

Usage:
ModVar$mode()

Details: By default returns NA, which will be the case for most ModVar variables, because
arbitrary distributions are not guaranteed to be unimodal.

Returns: Mode as a numeric value.

Method SD(): Standard deviation of the model variable.

Usage:
ModVar$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Quantiles of the uncertainty distribution.

Usage:
ModVar$quantile(probs)

Arguments:
probs Numeric vector of probabilities, each in range [0,1].

Returns: Vector of numeric values of the same length as probs.

Method r(): Draw a random sample from the model variable.

Usage:
ModVar$r()

Details: The same random sample will be returned until set is called to force a resample.

Returns: A sample drawn at random.

Method set(): Sets the value of the ModVar.

ModVar 65

Usage:

ModVar$set(what = "random", val = NULL)

Arguments:

what Until set is called again, subsequent calls to get will return a value determined by the
what parameter as follows:

"random" a random sample is drawn from the uncertainty distribution;

"expected" the mean of the uncertainty distribution;

"q2.5" the lower 95% confidence limit of the uncertainty distribution, i.e., the 2.5th per-
centile;

"q50" the median of the uncertainty distribution;

"q97.5" the upper 95% confidence limit of the uncertainty distribution, i.e., the 97.5th
percentile;

"current" leaves the what parameter of method set unchanged, i.e. the call to set has no
effect on the subsequent values returned by get. It is provided as an option to help use
cases in which the what parameter is a variable;

"value" sets the value explicitly to be equal to parameter val. This is not recommended
for normal usage because it allows the model variable to be set to an implausible value,
based on its defined uncertainty. An example of where this may be needed is in threshold
finding.

val A numeric value, only used with what="value", ignored otherwise.

Returns: Updated ModVar.

Method get(): Get the value of the ModVar.

Usage:

ModVar$get()

Details: Returns the value defined by the most recent call to set().

Returns: Value determined by last set().

Method clone(): The objects of this class are cloneable with this method.

Usage:

ModVar$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

66 Node

Node A node in a graph

Description

An R6 class representing a node in a graph.

Details

A base class to represent a single node in a graph.

Methods

Public methods:
• Node$new()

• Node$label()

• Node$modvars()

• Node$type()

• Node$clone()

Method new(): Create new Node object.

Usage:
Node$new(label = "")

Arguments:

label An optional label for the node.

Returns: A new Node object.

Method label(): Return the label of the node.

Usage:
Node$label()

Returns: Label as a character string.

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with this Node.

Usage:
Node$modvars()

Returns: An empty list for the base class.

Method type(): node type

Usage:
Node$type()

Returns: Node class, as character string.

NormalDistribution 67

Method clone(): The objects of this class are cloneable with this method.

Usage:
Node$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

NormalDistribution A parametrized Normal distribution

Description

An R6 class representing a parametrized Normal distribution.

Details

A Normal distribution with hyperparameters mean (mu) and standard deviation (sd). Inherits from
class Distribution.

Super class

rdecision::Distribution -> NormalDistribution

Methods

Public methods:
• NormalDistribution$new()

• NormalDistribution$distribution()

• NormalDistribution$sample()

• NormalDistribution$mean()

• NormalDistribution$SD()

• NormalDistribution$quantile()

• NormalDistribution$clone()

Method new(): Create a parametrized normal distribution.

Usage:
NormalDistribution$new(mu, sigma)

Arguments:
mu Mean of the Normal distribution.
sigma Standard deviation of the Normal distribution.

Returns: A NormalDistribution object.

68 NormalDistribution

Method distribution(): Accessor function for the name of the distribution.

Usage:
NormalDistribution$distribution()

Returns: Distribution name as character string.

Method sample(): Draw a random sample from the model variable.

Usage:
NormalDistribution$sample(expected = FALSE)

Arguments:

expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-
tion.

Returns: A sample drawn at random.

Method mean(): Return the mean value of the distribution.

Usage:
NormalDistribution$mean()

Returns: Expected value as a numeric value.

Method SD(): Return the standard deviation of the distribution.

Usage:
NormalDistribution$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Return the quantiles of the Normal uncertainty distribution.

Usage:
NormalDistribution$quantile(probs)

Arguments:

probs Vector of probabilities, in range [0,1].

Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NormalDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

NormModVar 69

NormModVar A model variable whose uncertainty follows a Normal distribution

Description

An R6 class representing a model variable with Normal uncertainty.

Details

A model variable for which the uncertainty in its point estimate can be modelled with a Normal
distribution. The hyperparameters of the distribution are the mean (mu) and the standard deviation
(sd) of the uncertainty distribution. The value of mu is the expected value of the variable. Inherits
from class ModVar.

Super class

rdecision::ModVar -> NormModVar

Methods

Public methods:
• NormModVar$new()

• NormModVar$is_probabilistic()

• NormModVar$clone()

Method new(): Create a model variable with normal uncertainty.
Usage:
NormModVar$new(description, units, mu, sigma)

Arguments:
description A character string describing the variable.
units Units of the quantity; character string.
mu Hyperparameter with mean of the Normal distribution for the uncertainty of the variable.
sigma Hyperparameter equal to the standard deviation of the normal distribution for the uncer-

tainty of the variable.
Returns: A NormModVar object.

Method is_probabilistic(): Tests whether the model variable is probabilistic.
Usage:
NormModVar$is_probabilistic()

Returns: TRUE if probabilistic.

Method clone(): The objects of this class are cloneable with this method.
Usage:
NormModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

70 Reaction

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

Reaction A reaction (chance) edge in a decision tree

Description

An R6 class representing a reaction (chance) edge in a decision tree.

Details

A specialism of class Arrow which is used in a decision tree to represent edges whose source nodes
are ChanceNodes.

Super classes

rdecision::Edge -> rdecision::Arrow -> Reaction

Methods

Public methods:
• Reaction$new()

• Reaction$modvars()

• Reaction$set_probability()

• Reaction$p()

• Reaction$set_cost()

• Reaction$cost()

• Reaction$set_benefit()

• Reaction$benefit()

• Reaction$clone()

Method new(): Create an object of type Reaction. A probability must be assigned to the edge.
Optionally, a cost and a benefit may be associated with traversing the edge. A pay-off (benefit-
cost) is sometimes used in edges of decision trees; the parametrization used here is more general.

Usage:
Reaction$new(
source_node,
target_node,
p = 0,
cost = 0,
benefit = 0,
label = ""

)

Arguments:

Reaction 71

source_node Chance node from which the reaction leaves.
target_node Node which the reaction enters.
p Conditional probability of traversing the reaction edge.
cost Cost associated with traversal of this edge (numeric or ModVar), not NA.
benefit Benefit associated with traversal of the edge (numeric or ModVar), not NA.
label Character string containing the reaction label.

Returns: A new Reaction object.

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with this Action. Includes operands of these ModVars, if they are expressions.

Usage:
Reaction$modvars()

Returns: A list of ModVars.

Method set_probability(): Set the probability associated with the reaction edge.

Usage:
Reaction$set_probability(p)

Arguments:
p Conditional probability of traversing the reaction edge. Of type numeric or ModVar. If nu-

meric, p must be in the range [0,1], or NA_real_. Note that setting p = NA will cause an
error.

Returns: Updated Reaction object.

Method p(): Return the current value of the edge probability, i.e., the conditional probability of
traversing the edge.

Usage:
Reaction$p()

Returns: Numeric value in range [0,1].

Method set_cost(): Set the cost associated with the reaction edge.

Usage:
Reaction$set_cost(c = 0)

Arguments:
c Cost associated with traversing the reaction edge. Of type numeric or ModVar.

Returns: Updated Reaction object.

Method cost(): Return the cost associated with traversing the edge.

Usage:
Reaction$cost()

Returns: Cost.

Method set_benefit(): Set the benefit associated with the reaction edge.

Usage:

72 SemiMarkovModel

Reaction$set_benefit(b = 0)

Arguments:

b Benefit associated with traversing the reaction edge. Of type numeric or ModVar.

Returns: Updated Action object.

Method benefit(): Return the benefit associated with traversing the edge.

Usage:
Reaction$benefit()

Returns: Benefit.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Reaction$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

SemiMarkovModel A semi-Markov model for cohort simulation

Description

An R6 class representing a semi-Markov model for cohort simulation.

Details

A class to represent a continuous time semi-Markov chain, modelled using cohort simulation. As
interpreted in rdecision, semi-Markov models may include temporary states and transitions are
defined by per-cycle probabilities. Although used widely in health economic modelling, the differ-
ences between semi-Markov models and Markov processes introduce some caveats for modellers:

• If there are temporary states, the result will depend on cycle length.

• Transitions are specified by their conditional probability, which is a per-cycle probability of
starting a cycle in one state and ending it in another; if the cycle length changes, the probabil-
ities should change, too.

• Probabilities and rates cannot be linked by the Kolmogorov forward equation, where the per-
cycle probabilities are given by the matrix exponential of the transition rate matrix, because
this equation does not apply if there are temporary states. In creating semi-Markov models, it
is the modeller’s task to estimate probabilities from published data on event rates.

• The cycle time cannot be changed during the simulation.

SemiMarkovModel 73

Graph theory

A Markov model is a directed multidigraph permitting loops (a loop multidigraph), optionally la-
belled, or a quiver. It is a multidigraph because there are potentially two edges between each pair
of nodes {A,B} representing the transition probabilities from A to B and vice versa. It is a directed
graph because the transition probabilities refer to transitions in one direction. Each edge can be
optionally labelled. It permits self-loops (edges whose source and target are the same node) to
represent patients that remain in the same state between cycles.

Transition rates and probabilities

Why semi-Markov?: Beck and Pauker (1983) and later Sonnenberg and Beck (1993) proposed
the use of Markov processes to model the health economics of medical interventions. Further, they
introduced the additional concept of temporary states, to which patients who transition remain for
exactly one cycle. This breaks the principle that Markov processes are memoryless and thus
the underlying mathematical formalism, first developed by Kolmogorov, is not applicable. For
example, ensuring that all patients leave a temporary state requires its transition rate to be infinite.
Hence, such models are usually labelled as semi-Markov processes.

Rates and probabilities: Miller and Homan (1994) and Fleurence & Hollenbeak (2007) provide
advice on estimating probabilities from rates. Jones (2017) and Welton (2005) describe methods
for estimating probabilities in multi-state, multi-transition models, although those methods may
not apply to semi-Markov models with temporary states. In particular, note that the "simple"
equation, p = 1− e−rt (Briggs 2006) applies only in a two-state, one transition model.

Uncertainty in rates: In semi-Markov models, the conditional probabilities of the transitions
from each state are usually modelled by a Dirichlet distribution. In rdecision, create a Dirichlet
distribution for each state and optionally create model variables for each conditional probability
(ρij) linked to an applicable Dirichlet distribution.

Super classes

rdecision::Graph -> rdecision::Digraph -> SemiMarkovModel

Methods

Public methods:
• SemiMarkovModel$new()

• SemiMarkovModel$set_probabilities()

• SemiMarkovModel$transition_probabilities()

• SemiMarkovModel$transition_cost()

• SemiMarkovModel$get_statenames()

• SemiMarkovModel$reset()

• SemiMarkovModel$get_populations()

• SemiMarkovModel$get_cycle()

• SemiMarkovModel$get_tcycle()

• SemiMarkovModel$get_elapsed()

• SemiMarkovModel$tabulate_states()

74 SemiMarkovModel

• SemiMarkovModel$cycle()

• SemiMarkovModel$cycles()

• SemiMarkovModel$modvars()

• SemiMarkovModel$modvar_table()

• SemiMarkovModel$clone()

Method new(): Creates a semi-Markov model for cohort simulation.

Usage:
SemiMarkovModel$new(
V,
E,
tcycle = as.difftime(365.25, units = "days"),
discount.cost = 0,
discount.utility = 0

)

Arguments:

V A list of nodes (MarkovStates).
E A list of edges (Transitions).
tcycle Cycle length, expressed as an R difftime object.
discount.cost Annual discount rate for future costs. Note this is a rate, not a probability (i.e.

use 0.035 for 3.5%).
discount.utility Annual discount rate for future incremental utility. Note this is a rate, not

a probability (i.e. use 0.035 for 3.5%).

Details: A semi-Markov model must meet the following conditions:
1. It must have at least one node and at least one edge.
2. All nodes must be of class MarkovState;
3. All edges must be of class Transition;
4. The nodes and edges must form a digraph whose underlying graph is connected;
5. Each state must have at least one outgoing transition (for absorbing states this is a self-loop);
6. For each state the sum of outgoing conditional transition probabilities must be one. For

convenience, one outgoing transition probability from each state may be set to NA when
the probabilities are defined. Typically, probabilities for self loops would be set to NA.
Transition probabilities in Pt associated with transitions that are not defined as edges in the
graph are zero. Probabilities can be changed between cycles.

7. No two edges may share the same source and target nodes (i.e. the digraph may not have
multiple edges). This is to ensure that there are no more transitions than cells in the transi-
tion matrix.

8. The node labels must be unique to the graph.

Returns: A SemiMarkovModel object. The population of the first state is set to 1000 and from
each state there is an equal conditional probability of each allowed transition.

Method set_probabilities(): Sets transition probabilities.

Usage:
SemiMarkovModel$set_probabilities(Pt)

SemiMarkovModel 75

Arguments:

Pt Per-cycle transition probability matrix. The row and column labels must be the state names
and each row must sum to one. Non-zero probabilities for undefined transitions are not
allowed. At most one NA may appear in each row. If an NA is present in a row, it is replaced
by 1 minus the sum of the defined probabilities.

Returns: Updated SemiMarkovModel object

Method transition_probabilities(): Per-cycle transition probability matrix for the model.

Usage:
SemiMarkovModel$transition_probabilities()

Returns: A square matrix of size equal to the number of states. If all states are labelled, the
dimnames take the names of the states.

Method transition_cost(): Return the per-cycle transition costs for the model.

Usage:
SemiMarkovModel$transition_cost()

Returns: A square matrix of size equal to the number of states. If all states are labelled, the
dimnames take the names of the states.

Method get_statenames(): Returns a character list of state names.

Usage:
SemiMarkovModel$get_statenames()

Returns: List of the names of each state.

Method reset(): Resets the model counters.

Usage:
SemiMarkovModel$reset(
populations = NULL,
icycle = 0L,
elapsed = as.difftime(0, units = "days")

)

Arguments:

populations A named vector of populations for the start of the state. The names should be
the state names. Due to the R implementation of matrix algebra, populations must be a
numeric type and is not restricted to being an integer. If NULL, the population of all states
is set to zero.

icycle Cycle number at which to start/restart.
elapsed Elapsed time since the index (reference) time used for discounting as an R difftime

object.

Details: Resets the state populations, next cycle number and elapsed time of the model. By
default the model is returned to its ground state (zero people in the all states; next cycle is
labelled zero; elapsed time (years) is zero). Any or all of these can be set via this function.
icycle is simply an integer counter label for each cycle, elapsed sets the elapsed time in years
from the index time from which discounting is assumed to apply.

76 SemiMarkovModel

Returns: Updated SemiMarkovModel object.

Method get_populations(): Gets the occupancy of each state.

Usage:
SemiMarkovModel$get_populations()

Returns: A numeric vector of populations, named with state names.

Method get_cycle(): Gets the current cycle number.

Usage:
SemiMarkovModel$get_cycle()

Returns: Current cycle count, as an integer.

Method get_tcycle(): Gets the cycle duration.

Usage:
SemiMarkovModel$get_tcycle()

Returns: Current cycle duration, as a difftime object.

Method get_elapsed(): Gets the current elapsed time.

Usage:
SemiMarkovModel$get_elapsed()

Details: The elapsed time is defined as the difference between the current time in the model
and an index time used as the reference time for applying discounting. By default the elapsed
time starts at zero. It can be set directly by calling reset. It is incremented after each call to
cycle by the cycle duration to the time at the end of the cycle (even if half cycle correction is
used). Thus, via the reset and cycle methods, the time of each cycle relative to the discounting
index and its duration can be controlled arbitrarily.

Returns: Elapsed time as an R difftime object.

Method tabulate_states(): Tabulation of states

Usage:
SemiMarkovModel$tabulate_states()

Details: Creates a data frame summary of each state in the model.

Returns: A data frame with the following columns:
Name State name
Cost Annual cost of occupying the state
Utility Incremental utility associated with being in the state.

Method cycle(): Applies one cycle of the model.

Usage:
SemiMarkovModel$cycle(hcc.pop = TRUE, hcc.cost = TRUE, hcc.QALY = TRUE)

Arguments:

SemiMarkovModel 77

hcc.pop Determines the state populations returned by this function. If FALSE, the end of
cycle populations apply; if TRUE the mid-cycle populations and time apply. The mid-cycle
populations are taken as the mean of the start and end populations and the discount time as
the mid-point. The value of this parameter does not affect the state populations or elapsed
time passed to the next cycle or available via get_populations; those are always the end
cycle values.

hcc.cost Determines the state occupancy costs returned by this function and the time at which
the cost discount is applied to the occupancy costs and the entry costs. If FALSE, the end
of cycle populations and time apply; if TRUE the mid-cycle populations and time apply, as
per hcc.pop. The value of this parameter does not affect the state populations or elapsed
time passed to the next cycle or available via get_populations; those are always the end
cycle values.

hcc.QALY Determines the incremental quality adjusted life years returned by this function and
the time at which the utility discount is applied. If FALSE, the end of cycle population and
reference time are applied to the utilities of each state; if TRUE the mid-cycle populations
and time are applied to the state utilities. The value of this parameter does not affect the state
populations or elapsed time passed to the next cycle or available via get_populations;
those are always the end cycle values.

Returns: Calculated values, one row per state, as a data frame with the following columns:
State Name of the state.
Cycle The cycle number.
Time Clock time in years of the end of the cycle.
Population Populations of the states; see hcc.pop.
OccCost Cost of the population occupying the state for the cycle. Discounting and half cycle

correction is applied, if those options are set. The costs are normalized by the model popu-
lation. The cycle costs are derived from the annual occupancy costs of the MarkovStates.

EntryCost Cost of the transitions into the state during the cycle. Discounting is applied, if the
option is set. The result is normalized by the model population. The cycle costs are derived
from Transition costs.

Cost Total cost, normalized by model population.
QALY Quality adjusted life years gained by occupancy of the states during the cycle. Half cycle

correction and discounting are applied, if these options are set. Normalized by the model
population.

Method cycles(): Applies multiple cycles of the model.

Usage:
SemiMarkovModel$cycles(
ncycles = 2L,
hcc.pop = TRUE,
hcc.cost = TRUE,
hcc.QALY = TRUE

)

Arguments:
ncycles Number of cycles to run; default is 2.
hcc.pop Determines the state populations returned by this function. If FALSE, the end of

cycle populations apply; if TRUE the mid-cycle populations and time apply. The mid-cycle

78 SemiMarkovModel

populations are taken as the mean of the start and end populations and the discount time as
the mid-point. The value of this parameter does not affect the state populations or elapsed
time passed to the next cycle or available via get_populations; those are always the end
cycle values.

hcc.cost Determines the state occupancy costs returned by this function and the time at which
the cost discount is applied to the occupancy costs and the entry costs. If FALSE, the end
of cycle populations and time apply; if TRUE the mid-cycle populations and time apply, as
per hcc.pop. The value of this parameter does not affect the state populations or elapsed
time passed to the next cycle or available via get_populations; those are always the end
cycle values.

hcc.QALY Determines the incremental quality adjusted life years returned by this function and
the time at which the utility discount is applied. If FALSE, the end of cycle population and
reference time are applied to the utilities of each state; if TRUE the mid-cycle populations
and time are applied to the state utilities. The value of this parameter does not affect the state
populations or elapsed time passed to the next cycle or available via get_populations;
those are always the end cycle values.

Details: The starting populations are redistributed through the transition probabilities and the
state occupancy costs are calculated, using function cycle. The end populations are then fed
back into the model for a further cycle and the process is repeated. For each cycle, the state
populations and the aggregated occupancy costs are saved in one row of the returned data frame,
with the cycle number. If the cycle count for the model is zero when called, the first cycle
reported will be cycle zero, i.e. the distribution of patients to starting states.

Returns: Data frame with cycle results, with the following columns:
Cycle The cycle number.
Years Elapsed time at end of cycle, years
Cost Cost associated with occupancy and transitions between states during the cycle.
QALY Quality adjusted life years associated with occupancy of the states in the cycle.
<name> Population of state <name> at the end of the cycle.

Method modvars(): Find all the model variables in the Markov model.

Usage:
SemiMarkovModel$modvars()

Details: Returns variables of type ModVar that have been specified as values associated with
transition rates and costs and the state occupancy costs and utilities.

Returns: A list of ModVars.

Method modvar_table(): Tabulate the model variables in the Markov model.

Usage:
SemiMarkovModel$modvar_table()

Returns: Data frame with one row per model variable, as follows:
Description As given at initialization.
Units Units of the variable.
Distribution Either the uncertainty distribution, if it is a regular model variable, or the ex-

pression used to create it, if it is an ExprModVar.

Stack 79

Mean Mean; calculated from means of operands if an expression.
E Expectation; estimated from random sample if expression, mean otherwise.
SD Standard deviation; estimated from random sample if expression, exact value otherwise.
Q2.5 p=0.025 quantile; estimated from random sample if expression, exact value otherwise.
Q97.5 p=0.975 quantile; estimated from random sample if expression, exact value otherwise.
Est TRUE if the quantiles and SD have been estimated by random sampling.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SemiMarkovModel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Beck JR and Pauker SG. The Markov Process in Medical Prognosis. Med Decision Making,
1983;3:419–458.

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

Fleurence RL and Hollenbeak CS. Rates and probabilities in economic modelling. PharmacoEco-
nomics, 2007;25:3–6.

Jones E, Epstein D and García-Mochón L. A procedure for deriving formulas to convert transition
rates to probabilities for multistate Markov models. Medical Decision Making 2017;37:779–789.

Miller DK and Homan SM. Determining transition probabilities: confusion and suggestions. Med-
ical Decision Making 1994;14:52-58.

Sonnenberg FA, Beck JR. Markov models in medical decision making: a practical guide. Medical
Decision Making, 1993:13:322.

Welton NJ and Ades A. Estimation of Markov chain transition probabilities and rates from fully
and partially observed data: uncertainty propagation, evidence synthesis, and model calibration.
Medical Decision Making, 2005;25:633-645.

Stack A stack

Description

An R6 class representing a stack of objects of any type.

80 Stack

Details

Conventional implementation of a stack. Used extensively in graph algorithms and offered as a sep-
arate class for ease of programming and to ensure that implementations of stacks are optimized. By
intention, there is only minimal checking of method arguments. This is to maximize performance
and because the class is mainly intended for use internally to rdecision.

Methods

Public methods:
• Stack$new()

• Stack$push()

• Stack$pop()

• Stack$size()

• Stack$as_list()

• Stack$clone()

Method new(): Create a stack.

Usage:
Stack$new()

Returns: A new Stack object.

Method push(): Push an item onto the stack.

Usage:
Stack$push(x)

Arguments:

x The item to push onto the top of the stack. It should be of the same class as items previously
pushed on to the stack. It is not checked.

Returns: An updated Stack object

Method pop(): Pop an item from the stack. Stack underflow and raises an error.

Usage:
Stack$pop()

Returns: The item previously at the top of the stack.

Method size(): Gets the number of items on the stack.

Usage:
Stack$size()

Returns: Number of items.

Method as_list(): Inspect items in the stack.

Usage:
Stack$as_list()

Returns: A list of items.

Transition 81

Method clone(): The objects of this class are cloneable with this method.

Usage:
Stack$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

Transition A transition in a semi-Markov model

Description

An R6 class representing a transition in a semi-Markov model.

Details

A specialism of class Arrow which is used in a semi-Markov model to represent a transition between
two MarkovStates. The transition is optionally associated with a cost. The transition probability is
associated with the model (SemiMarkovModel) rather than the transition.

Super classes

rdecision::Edge -> rdecision::Arrow -> Transition

Methods

Public methods:
• Transition$new()

• Transition$modvars()

• Transition$set_cost()

• Transition$cost()

• Transition$clone()

Method new(): Create an object of type MarkovTransition.

Usage:
Transition$new(source_state, target_state, cost = 0, label = "")

Arguments:

source_state MarkovState from which the transition starts.
target_state MarkovState to which the transition ends.
cost Cost associated with the transition.
label Character string containing a label for the transition (the name of the event).

82 Transition

Returns: A new Transition object.

Method modvars(): Find all the model variables.

Usage:
Transition$modvars()

Details: Find variables of type ModVar that have been specified as values associated with this
MarkovTransition. Includes operands of these ModVars, if they are expressions.

Returns: A list of ModVars.

Method set_cost(): Set the cost associated with the transition.

Usage:
Transition$set_cost(c = 0)

Arguments:

c Cost associated with the transition.

Returns: Updated Transition object.

Method cost(): Return the cost associated with traversing the edge.

Usage:
Transition$cost()

Returns: Cost.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Transition$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

Index

∗ datasets
BriggsEx47, 12

Action, 2
Arborescence, 5, 18
Arrow, 8

BetaDistribution, 9
BetaModVar, 11
BriggsEx47, 12

ChanceNode, 13
ConstModVar, 14

DecisionNode, 15
DecisionTree, 16
Digraph, 24
DiracDistribution, 29
DirichletDistribution, 31
Distribution, 33

Edge, 35
EmpiricalDistribution, 37
ExprModVar, 39

GammaDistribution, 44
GammaModVar, 46
gbp, 47
Graph, 48

LeafNode, 54
LogNormDistribution, 56, 60
LogNormModVar, 59

MarkovState, 60
ModVar, 62

Node, 66
NormalDistribution, 67
NormModVar, 69

rdecision::Arborescence, 16

rdecision::Arrow, 3, 70, 81
rdecision::Digraph, 5, 16, 73
rdecision::Distribution, 9, 29, 31, 37, 44,

56, 67
rdecision::Edge, 3, 8, 70, 81
rdecision::Graph, 5, 16, 24, 73
rdecision::ModVar, 11, 14, 39, 46, 59, 69
rdecision::Node, 13, 15, 54, 60
Reaction, 70

SemiMarkovModel, 72
Stack, 79

Transition, 81

83

	Action
	Arborescence
	Arrow
	BetaDistribution
	BetaModVar
	BriggsEx47
	ChanceNode
	ConstModVar
	DecisionNode
	DecisionTree
	Digraph
	DiracDistribution
	DirichletDistribution
	Distribution
	Edge
	EmpiricalDistribution
	ExprModVar
	GammaDistribution
	GammaModVar
	gbp
	Graph
	LeafNode
	LogNormDistribution
	LogNormModVar
	MarkovState
	ModVar
	Node
	NormalDistribution
	NormModVar
	Reaction
	SemiMarkovModel
	Stack
	Transition
	Index

